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Selective Classifiers with Arbitrary Tests

Instance space:

Let X denote the set of possible instances; an instance is the input part x of a training

example (x, y) and y is the target label.

Concept class C:

Consider binary functions (“concepts”) f ∶ X Ð→ {0,1} that belong to a class C, and are

used to label the instances x. The learning algorithm has knowledge of C but not of the

specific f ∈ C that is used to label observations. A class that contains concepts that are

too simple may not be expressive enough to describe the data-generating process, while a

concept class that is too large would not allow us to design efficient learning algorithms.

Assume that C has VC dimension d.

Data generation:

Let P be a probability distribution over X. The training data is obtained as follows: An

instance x ∈ X is drawn according to P . If f ∈ C is the target concept-function, the

instance x is labeled as f(x) and the learning algorithm observes sample (x, f(x)). So,

for labeled training data {(x1, y1), ..., (xn, yn)} we assume that x1, ..., xn are iid ∼ P and

are labeled as (y1, ..., yn) = (f(x1), ..., f(xn)).1

Our goal is to learn the target function f ∈ C. Consider a 0−1 loss function l(y, y′) = 1{y ≠ y′} =
∣y − y′∣. Consider also a deterministic Emprical Risk Minimization (ERM) oracle that computes

ERM(x,y) ∈ argminc∈C
n

∑
i=1

l(yi, c(xi)) for any dataset x,y. That is, we assume access to a

deterministic algorithm that takes as input the labeled training data x = (x1, ..., xn) and labels

y = (y1, ..., yn) = (f(x1), ..., f(xn)) and returns a function h which has 0 training cost

h ∶= ERM(x,y) = ERM(x, f(x)) (1)

1Note the difference with the usual framework where data are generated from a joint distribution D over

X × Y and we factorize D(x, y) =D(x)D(y∣x), assuming input space X and target values Y = {−1,1}.
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and agrees with the unknown f on n points. Essentially there is a “version space” of classifiers

with 0 training cost V S ∶= {c ∈ C ∶ c(x) = y} and h belongs to it.2

Goldwasser et al. 2020 propose a transductive abstention algorithm, i.e. an algorithm that

classifies arbitrary test examples in a transductive selective classification setting. Transductive

learning refers to the idea of leveraging unlabeled test data during training, i.e. the unlabeled

test set is observed alongside the training examples. The test examples are referred to as out of

distribution (OOD) test examples, as they come from a distribution Q that is not the same as

the distribution of the training examples P .

In summary, the learning algorithm takes as input:

a) training examples from a distribution P over X labeled with some unknown function f that

belongs to a class C with finite VC dimension d,

b) arbitrary unlabeled test examples (possibly chosen by an unknown adversary),

and outputs a selective classifier h∣S(x) (or predictor) that abstains from predicting for certain

examples.

1 Preliminaries & Background

Definition of the selective classifier:3 We want to learn an unknown f ∈ C, where C is a family

of binary functions of VC dimension d, relative to some distributions P,Q over X. The learner is

given examples from P , labeled by f ∈ C, and unlabeled exampled from Q. The learner outputs

a selective classifier h∣S ∶ X Ð→ {0,1,⊥}. We say that x is rejected if h∣S(x) =⊥ and classified

when h∣S(x) = 1/0. The selective classifier has to learn both a classifier and a subset S ⊆ X of

examples to classify.

h∣S(x) ∶=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 if x ∈ Sand h∣S(x) = f(x)
0 if x ∈ Sand h∣S(x) = 1 − f(x)
⊥ if x ∉ S

(2)

Classification agrees with f in the first case, and it is wrong in the second. An error is a

misclassification example that is not rejected.

2A. Kalai and Kanade 2021, p.6.
3Goldwasser et al. 2020, p.2, https://arxiv.org/pdf/2007.05145.pdf; A. T. Kalai and Kanade 2021,

p.2f., §1.1.
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Note that for the n training data x1, ..., xn iid ∼ P with labels y1, ..., yn = f(x1), ..., f(xn) the
algorithm first trains a classifier h ∶= ERM(x, f(x)) agreeing with the unknown f , which has 0

training cost. So, for the training data x1, ..., xn we also have h∣S(xi) = f(xi) for i = 1, ..., n.
What we want to do though is to define the selective classifier for all x’s that belong to the input

space X.

2 Definition of the errors4

Let X be the input space, D a distribution defined over X and C the set of functions X Ð→ {0,1}
with VC dimension d.

1. For h, f ∈ C, we denote the error of the hypothesis/classifier h wrt the ground truth

classifier f by

errD(h) = Prx∼D[h(x) ≠ f(x)] . (3)

For the selective classifier h∣S ∶X Ð→ {0,1,⊥}

errD(h∣S) = Prx∼D[h∣S(x) ≠ f(x) ∧ h∣S(x) ≠⊥ i.e. x ∈ S] . (4)

2. We also define the rejection rate of h∣S wrt D

rejD(h∣S) = Prx∼D[h∣S(x) =⊥] . (5)

3 Goldwasser et al. 2020

Goldwasser et al. 2020 consider two learning settings:

a) “The generalization setting” where the learner is given:

● n iid training examples x = (x1, ..., xn) from a training distribution P labeled by the

unknown ground truth classifier f ∈ C with labels f(x) = (f(x1), ..., f(xn)),

● and unlabeled data x̃ drawn iid from a test distribution Q ≠ P .

● The algorithm assumes access to an appropriate ERM oracle is that is computed first

based on the training data, h ∶= ERM(x, f(x)).

b) “The transductive setting” where P = Q. Here the learner chooses h ∶= ERM(x, f(x))
using the data from P .

4Goldwasser et al. 2020, p.3; A. T. Kalai and Kanade 2021, p.5, §2.
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● Then, a white-box adversary that knows h and can see some test data z from P

creates additional arbitrary test data x̃. So the test data include arbitrary adversarial

perturbations.

● The learner looks at the test data at the same time as the training data to come up

with a selective classifier.

Goldwasser et al. 2020 provide two algorithms with novel types of guarantees:5

• a supervised algorithm called Rejectron that takes as input the labeled training data and

the unlabeled test data,

• and an unsupervised algorithm URejectron that uses unlabeled training and test examples.

4 Errors in the generalization (or covariate shift) setting

PQ learning considers two separate rates to measure performance:

i)

errQ = Prx̃∼Q[h∣S(x̃) ≠ f(x̃) ∧ x̃ ∈ S] (6)

i.e. the misclassification error on future test examples from Q on which the classifier does

not abstain.

ii)

rejP = Prx∼P [x ∉ S] (7)

i.e. the fraction of future examples from P on which the classifier abstains.

While apparently intuitive to attempt to use as performance measures errQ and rejQ instead of

rejP , the problem is that rejQ cannot be bound directly. To address this problem Goldwasser

et al. 2020 use the following novel idea. The rejection rate wrt P rejP is used to bound the

rejection rate wrt Q as follows:

rejQ ≤ rejP + ∣P −Q∣TV (8)

where ∣P −Q∣TV is the total variation distance between P and Q, a measure of non-overlap that

ranges from 0, when P = Q, to 1, when P and Q have disjoint supports.6

5Goldwasser et al. 2020, p.2-3; referee 2: https://papers.nips.cc/paper/2020/file/

b6c8cf4c587f2ead0c08955ee6e2502b-Review.html
6The total variation distance between two distributions P and Q

∣P −Q∣TV = supall events A∣P (A) −Q(A)∣
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Fact: If X and Y are two random variables with marginal distributions P and Q, then for an

event A

∣P (A) −Q(A)∣ = ∣Pr(X ∈ A) − Pr(Y ∈ A)∣
= ∣Pr(X ∈ A,X = Y ) + Pr(X ∈ A,X ≠ Y ) − Pr(Y ∈ A,X = Y ) − Pr(Y ∈ A,X ≠ Y )∣
≤ ∣Pr(X ∈ A,X = Y ) − Pr(Y ∈ A,X = Y )∣ + ∣Pr(X ∈ A,X ≠ Y ) − Pr(Y ∈ A,X ≠ Y )∣
= 0 + Pr(X ≠ Y )

(9)

Lemma 4.1 For any S ⊂X and distributions P,Q over X

rejQ(S) ≤ rejP (S) + ∣P −Q∣TV . (10)

Proof (?). For x̃ ∼ Q and x ∼ P

Pr(reject x̃) = Pr(reject x̃ and x̃ = x) + Pr(reject x̃ and x̃ ≠ x)
Ô⇒ rejQ ≤ rejP + ∣P −Q∣TV

(11)

assuming that ∣P −Q∣TV = Pr(x̃ ≠ x) (and ignoring the sup in the definition of total variation

distance).

5 Errors in the transductive setting with white box adversary7

In the transductive setting there is no Q. The learner first chooses h ∶= ERM(x, f(x)) with
training data x ∼ P and f(x). Then, a true test set z ∼ P is drawn. Based on x, z, f, h the

adversary modifies any number of examples from z to create an arbitrary test set x̃. We consider

empirical analogues of errQ and rejP

errx̃ =
1

n
∣{i ∈ [n] ∶ h∣S(x̃i) ≠ f(x̃i) and x̃i ∈ S}∣ (12)

rejz =
1

n
∣{i ∈ [n] ∶ zi ∉ S}∣ (13)

and use them as performance measures.

Again rejx̃ is bounded in terms of rejz:

rejx̃ ≤ rejz +∆(z, x̃) (14)

where ∆(z, x̃) = 1
n ∣{i ∈ [n] ∶ zi ≠ x̃i}∣ is the transductive analogue of ∣P −Q∣TV .

is the largest difference between the probabilities that the two distributions assign to the same event (https:

//en.wikipedia.org/wiki/Total_variation).
7Goldwasser et al. 2020, p.8.
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6 Guarantees

We consider the algorithm guarantees in terms of the performance measures.

Fundamental Theorem Recall that for any distribution P over examples x ∈ X and any true

classifier f ∶X Ð→ {0,1} in C of VC dimension d, the so-called Fundamental Theorem of Statistical

Learning (FTSL) guarantees that the error rate on future test examples from P (i.e. P = Q), of

any classifier h ∈ C that agrees with f on the train data is Õ( dn):8

err(h) = Prx̃∼P (h(x̃) ≠ f(x̃)) = Õ(
d

n
) .

Goldwasser et al. 2020 offer two kinds of guarantees in Theorems 5.2 and 5.4 for the case

of the “generalization setting”, and in Theorems 5.3 and 5.5 for the case of the “transductive

setting”.

Guarantee 1 (Thm 5.2):

max{errQ, rejP} = Õ(
√

d

n
) (15)

Remark: Even when P = Q the guarantees are Õ(
√

d
n) compared to Õ( dn) of the FTSL. Hence,

inherent in the algorithm there is a necessary additional cost due to abstaining compared with

the common rate Õ( dn).

Guarantee 2 (Thm 5.4): In the worst case

errQ + rejP ≥ Ω(
√

d

n
) . (16)

7 The Rejectron algorithm

Input:

● train data x ∈X and their labels y = f(x)

● test data x̃ ∈X

● error parameter ϵ ∈ [0,1], weight Λ = n + 1

● classifier h ∶= ERM(x, f(x))
8The soft Õ hides logarithmic factors, i.e. f(n) = Õ(g(n)) is short for f(n) = O(g(n) logk n) for some

constant k.
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Output: The algorithm defines iteratively a selective classifier h∣S, i.e. iteratively chooses a

hypothesis h and an acceptance set S.

At iteration t = 1:

● start with S1 =X

● choose c1 ∈ C to

max
c

s1(c) ∶= errx̃(h∣S1 , c) −Λ ⋅ errx(h, c)

such that c1 disagrees with h∣S1 on x̃:

errx̃(h∣S1 , c) =
1

n
∣{i ∈ [n] ∶ h∣S1(x̃i) ≠ c(x̃i) and x̃i ∈ S1}∣

h∣S1(x̃i) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

h(x̃i) if x̃i ∈ S1

⊥ if x̃i ∉ S1 ,

and c1 agrees with h on x:

errx(h, c) =
1

n
∣{i ∈ [n] ∶ h(xi) ≠ c(xi) and xi ∈ S1}∣ .

At iteration t = 2:

● choose S2 = {x ∈X ∶ h(x) = c1(x)} so that we reject all x’s for which c1 disagrees with h.

8 Lemma 5.1

How do we calculate ct = argmaxc st(c)?

Recall that c agrees with h on x, and disagrees with h∣St on x̃.

1. Construct an artificial dataset that consists of

● each training sample, repeated Λ times, and labeled h(xi), and

● each test sample x̃i ∈ St, occurring just once, and labeled 1 − h(x̃i).

2. Run ERM on this artificial dataset to get a classifier c.

3. The number of errors that the ERM classifier makes on these artificial data is

Λ ∑
i∈[n]
∣c(xi) − h(xi)∣ + ∑

i∶x̃i∈St

∣c(x̃i) − (1 − h(x̃i)∣ = 9
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Λ ∑
i∈[n]
∣c(xi) − h(xi)∣ + ∑

i∶x̃i∈St

1 − ∑
i∶x̃i∈St

∣c(x̃i) − h(x̃i)∣ =

∣i ∈ [n] ∶ x̃i ∈ St∣ − ηt(c) .

4. The c that minimizes the error in this artificial dataset, maximizes st(c).

5. Remark: each St is not explicitly stored since S1 = X could be infinite. Instead we only

need to maintain the subset of indices of test examples which are in the acceptance set St.
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