Stochastic SparseMAP

Mixed Sparse Structured Text Rationalization (SPECTRA)

Sophia Sklaviadis

July 27, 2024

Stochastic Rationalizer Models

Problem statement

Explainability and model transparency:

We are interested in making NN-based text classifiers interpretable by training jointly

- i) a latent model that selects a rationale, i.e. a short and coherent extract of the input text, that serves as an explanation to the end user,
- ii) and a classifier that learns from the words of the rationale alone.

Previous (most) related work: Lei et al. [2016], Bastings et al. [2019], Treviso and Martins [2020], Guerreiro and Martins [2021].

Latent Structure Models

Consider a text classification setting with

- a sentence of length L as input variable: $\mathbf{x} = \langle x_1, ..., x_L \rangle \in \mathbb{R}^{D \times L}$ where D is the initial embedding size,
- a discrete structured latent variable \mathbf{z} that consists of a combination of L binary parts that respect structural constraints and indicate which words are present in the rationale: $\mathbf{z} \in \mathcal{Z} \subset \{0,1\}^{L+\text{constraints}}$ where \mathcal{Z} is the set of feasible configurations \mathbf{z} satisfying certain given constraints, and
- a categorical output variable Y, indicating the sentence's class:

$$Y|\mathbf{z},\mathbf{x} \sim \mathsf{Cat}(\mathbf{x} \odot \mathbf{z}; \boldsymbol{\theta}).$$

Latent Structure Models

Deterministic

Identify an optimal $\hat{\mathbf{z}}(\mathbf{x},\phi)$ and optimize

$$\min_{\theta,\phi} - \log p(y \mid \mathbf{x}, \hat{\mathbf{z}}(\mathbf{x}, \phi), \theta).$$

Probabilistic

Assume $Z \sim p(\mathbf{z} \mid \mathbf{x}, \phi)$ and optimize

$$\min_{\boldsymbol{\theta}, \boldsymbol{\phi}} - \mathbb{E}_{\mathbf{z} \sim p(\mathbf{z} \mid \mathbf{x}, \boldsymbol{\phi})} \log p(y \mid \mathbf{x}, \mathbf{z}, \boldsymbol{\theta}).$$

Representation of structure **z** in a factor graph

Using a factor graph with

- variable nodes corresponding to tokens, and
- factor nodes encoding dependencies between the variables,

we can represent each structure \boldsymbol{z} as a bit vector $\boldsymbol{a}_{\boldsymbol{z}}$ that has

- one component per token indicating if it is part of z, and
- additional components corresponding to factors that represent the instantiation of constraints...

Representation of structure **z** in a factor graph

Assume that the L components $\mathbf{z}=\langle z_1,...,z_L\rangle$ that describe a rationale satisfy

- a global BUDGET constrain, i.e. a factor linked to all tokens imposing that at most B of them can be selected, and
- ullet L-1 pairwise factors for every pair of contiguous tokens.

The representation $\mathbf{a_z}$ is a d=2L-1-dimensional bit vector, with $d<<\mid\mathcal{Z}\mid$,

$$\mathbf{a_z} \in \{0,1\}^{2L-1} \quad [\mathbf{a_z}]_i = \begin{cases} z_i & \text{for } i = 1,...,L \\ z_{i-L}z_{i-L+1} & \text{for } L < i \le 2L-1 \end{cases}$$

where $z_i=1$ if token i is present in the rationale, else 0, and $\sum_{i=1}^{L}z_i\leq B$.

Marginal Polytope

Given a vector $\mathbf{s} = \langle s_i \rangle_{i=1}^L$ of scores for the unary parts $\langle z_i \rangle_{i=1}^L$, we assume that the score of the structure \mathbf{z} is factored, so that structures with common parts share the corresponding scores

$$score(\mathbf{a_z}) = \sum_{i=1}^{L} s_i z_i + \sum_{i=L+1}^{2L-1} r_i z_{i-L} z_{i-L+1} + \mathbf{1}_{BUDGET}^{1}$$
$$= \boldsymbol{\eta}^{\mathsf{T}} \mathbf{a_z}$$

where $r_i \geq 0$ are constants encouraging contiguity, and $\boldsymbol{\eta} = [\mathbf{s}, \mathbf{r}]^\mathsf{T}$.

Note that a NN architecture maps the input to scores $s_i = s_i(\mathbf{x}; \phi)$, and ϕ denotes collectively the NN parameters.

 $^{^{1}\}mbox{For simplification}$ of the exposition we do not include the Budget term in the subsequent notation.

Marginal Polytope

Denote by A the $d \times |\mathcal{Z}|$ matrix

- ullet whose columns are the representations a_z of each possible z,
- which specifies fully the structure of the problem.

Hence, the $\mid \mathcal{Z} \mid$ -dim vector of all scores

$$\mathbf{S} = \begin{pmatrix} \mathsf{score}(\mathbf{a}_1) \\ \vdots \\ \mathsf{score}(\mathbf{a}_z) \\ \vdots \\ \mathsf{score}(\mathbf{a}_{|\mathcal{Z}|}) \end{pmatrix} = A_{|\mathcal{Z}| \times d}^\mathsf{T} \eta_{d \times 1} \text{ can be expressed in terms of }$$

the common low dimensional parameter η .

Marginal Polytope

$$\Delta^{|\mathcal{Z}|} = \{ \mathbf{p} \ \in \mathbb{R}^{|\mathcal{Z}|}; \mathbf{1}^\mathsf{T} \mathbf{p} = 1, p \geq 0 \}$$
 where each component of $\mathbf{p} = \begin{pmatrix} p_1 \\ \vdots \\ p_z \\ \vdots \\ p_{|\mathcal{Z}|} \end{pmatrix}$ is the probability of a

specific z.

The d=2L-1-dimensional marginal polytope ($d<<\mid\mathcal{Z}\mid$) defined as the convex hull:

$$\mathcal{M}_{\mathcal{A}} = \mathsf{conv}\{a_1,...,a_{|\mathcal{Z}|}\} = \{A_{d \times |\mathcal{Z}|} \mathbf{p}_{|\mathcal{Z}| \times 1}; \mathbf{p} \in \Delta^{|\mathcal{Z}|}\}.$$

Marginal Inference

Any point $\mu = A\mathbf{p}$ of the interior or \mathcal{M}_A corresponds to a "canonical" parameter η that contains the scores and parametrizes the Gibbs distribution:

$$\mathbf{p}_{\mathbf{z}}^* = P[Z = \mathbf{z}] \propto \exp(\boldsymbol{\eta}^{\mathsf{T}} \mathbf{a}_{\mathbf{z}}).$$

 $\mathbf{p}_{\mathbf{z}}^{*}$ is the structured equivalent of a component of the softmax that corresponds to the realization \mathbf{z} of the random structure Z.

So the full vector \mathbf{p}^* is the solution of the Shannon negetropy regularized optimization problem (i.e. the variational formulation of a CRF):

$$\mathbf{p}^* = \underset{\mathbf{p} \in \Delta^{|\mathcal{Z}|}}{\operatorname{argmax}} \langle \boldsymbol{\eta}, A \mathbf{p} \rangle - \Omega(\mathbf{p}) \quad \text{where } \Omega(\mathbf{p}) = \sum_{\mathbf{z}=1}^{|\mathcal{Z}|} \mathbf{p}_{\mathbf{z}} \log \mathbf{p}_{\mathbf{z}}.$$

Marginal Inference

Denote

- by A_u the first L rows of A, and
- by $\mu_u = A_u \mathbf{p}$ the first L elements of μ .

The marginal inference oracle is the μ_u^* part of $\mu^* = A\mathbf{p}^*$:

$$\begin{split} \boldsymbol{\mu}_u^* &= \mathsf{Marginal}_A(\boldsymbol{\eta}) = \underset{\boldsymbol{\mu}_u = A_u \mathbf{p}}{\mathsf{argmax}} \boldsymbol{\eta}^\mathsf{T} A \mathbf{p} - \Omega(\mathbf{p}) \\ &\underset{\boldsymbol{\mu}_u = A_u \mathbf{p}}{\mathsf{p} \in \Delta^{|\mathcal{Z}|}} \\ &= \underset{\boldsymbol{\mu}_u = A_u \mathbf{p}}{\mathsf{p} \in \Delta^{|\mathcal{Z}|}} \boldsymbol{\mu} - \Omega_A(\boldsymbol{\mu}) \end{split}$$

where the maximization is over μ but the unary part μ_u is the return value of interest.

Note that $\Omega_A(\mu) = \Omega(\mathbf{p})$ does not have a closed form (Niculae et al. [2018]).

Marginal Inference

Hence, the marginal inference oracle is $\mu_u^* = \mathbb{E}_{\mathbf{p}^*} Z$, the unary part of the "mean" parameter of the Gibbs distribution, essentially the unique marginal distributions of the parts $\langle z_i \rangle_{i=1}^L$ that correspond to the Gibbs distribution (i.e. the distribution induced by the (score) parameter $\eta = \begin{bmatrix} \mathbf{s} \\ \mathbf{r} \end{bmatrix}$).

MAP & SparseMAP: Regularizing by a squared I2 penalty

$$\begin{aligned} \mathsf{SparseMAP}(\boldsymbol{\eta}) &= \underset{\mathbf{p} \in \Delta^{|\mathcal{Z}|}}{\mathsf{argmax}} \langle \boldsymbol{\eta}, A \mathbf{p} \rangle - \frac{1}{2} \mid\mid A_u \mathbf{p} \mid\mid^2 \\ &= \underset{\boldsymbol{\mu} \in \mathcal{M}_A}{\mathsf{argmax}} \boldsymbol{\eta}^\mathsf{T} \boldsymbol{\mu} - \frac{1}{2} \mid\mid \boldsymbol{\mu}_u \mid\mid^2 \\ &= \underset{\boldsymbol{\mu}_u = A_u \mathbf{p}}{\mathsf{p}} \end{aligned}$$

where again the return value of interest is the optimum μ_u .

 $\mathsf{MAP}_{A}(\eta) = \mathsf{z}^*$ where z^* is the first L components of

$$\mathbf{a}_{\mathbf{z}}^* = \underset{\mathbf{z} \in \mathcal{Z}}{\operatorname{argmax}} \, \boldsymbol{\eta}^{\mathsf{T}} \mathbf{a}_{\mathbf{z}}.$$

Surrogate gradients

Using as an optimal structure

in the loss function of the Categorical output Y,

$$\min_{\theta,\phi} - \log p(y \mid \mathbf{x}, \hat{\mathbf{z}}(\mathbf{x}, \phi), \theta)$$

we can differentiate wrt ϕ .²

²Mihaylova et al. [2020]

Stochastic Latent Structures

Assuming a stochastic latent structure $Z \sim p(\cdot; \eta(\mathbf{x}, \phi))$ we need to optimize the expected loss and compute

$$\nabla_{\boldsymbol{\phi}} \mathbb{E}_{\mathbf{z} \sim p_{\boldsymbol{\phi}}} - \log p(y \mid \mathbf{x}, \mathbf{z}, \boldsymbol{\theta}).$$

Gumbel Max Trick: Motivation in the unstructured case: Let $Z \sim \mathsf{Categorical}(\eta)$ then $Z = \mathsf{argmax}_i(\eta + G)_i$ where G is a Gumbel (0,1) r.v.

The Gumbel max trick provides an alternative representation of the Categorical r.v. Z as a transformation of a Gumbel r.v. G.

Note that the Gumbel-max formulation enables rewriting $\mathbb{E}_{\mathbf{z}\sim p_{\phi}}$ wrt the Gumbel r.v. $\mathbb{E}_{G\sim \text{Gumbel}}$, however, $\nabla_{\phi}\mathbf{z}$ is still not differentiable.

Stochastic Latent Structures

<u>Gumbel Softmax Trick:</u> Approximate the discrete r.v. Z with the tempered softmax transformation of the Gumbel r.v. (Maddison et al. [2016], Jang et al. [2016]):

$$Z_{\tau} = \operatorname{softmax}_{\tau}(\boldsymbol{\eta} + G) \xrightarrow{\tau \to 0} Z$$

 $Z_{\tau} \sim \operatorname{Concrete}.$

We can generalize the Gumbel Softmax trick to structured Z (Paulus et al. [2020]):

$$Z = \operatorname*{argmax}_{\mathbf{p} \in \Delta^{|\mathcal{Z}|}} \langle oldsymbol{\eta} + G, A\mathbf{p}
angle - \Omega(\mathbf{p})$$

where $\Omega(\mathbf{p})$ is the Shannon negetropy.

Mixed Latent Structured Random Variables

We assume that Z follows the Gaussian-SparseMAP distribution that can assign non-zero probability mass to the boundary of the marginal polytope \mathcal{M}_A (Farinhas et al. [2021]). The distribution has the following generative story:

- generate an L-dim vector from the standard multivariate Normal $N \sim N(\mathbf{0}, I_{L \times L})$,
- perturb the scores of the L unary parts of the structure representation a_z so that its score is

$$\mathsf{score}(\mathsf{a_z}) = \left(egin{matrix} \mathsf{s} + \Sigma^{-1/2} \mathcal{N} \\ \mathsf{r} \end{matrix}
ight)^\mathsf{T} \mathsf{a_z} = \mathcal{H}^\mathsf{T} \mathsf{a_z}$$

where Σ can capture possible correlation between the unary parts of the structure,

• $Z = \text{SparseMAP}_A(H)$ is a sparse random vector that results from a transformation of the random variable H.

Mixed Latent Structured Random Variables

Hence,

$$Z = \underset{\mathbf{p} \in \Delta^{|\mathcal{Z}|}}{\operatorname{argmax}} \langle H, A\mathbf{p} \rangle - \frac{1}{2} || A_{u}\mathbf{p} ||^{2}$$

$$\mu = \begin{bmatrix} \mu_{u} \\ \mu_{f} \end{bmatrix} = A\mathbf{p}$$

$$\mu_{u} = A_{u}\mathbf{p}$$

$$= \underset{\mu \in \mathcal{M}_{A}}{\operatorname{argmax}} (\mathbf{s} + \Sigma^{-1/2}N)^{\mathsf{T}} \mu_{u} + \mathbf{r}^{\mathsf{T}} \mu_{f} - \frac{1}{2} || \mu_{u} ||^{2}$$

the random structure Z is the Euclidean projection on the marginal polytope \mathcal{M}_A of the normally perturbed unary scores. (Recall that $\mathbf{s}=s(\mathbf{x};\phi)$ depends on the input sentence \mathbf{x} and the parameters ϕ .)

Experiments

Tuning on BeerAdvocate

(Force)Budget=10, Temperature=0.05, downstream MSE is < 0.02 across all experiments.

Transition	Spectra	Perturb 0.001*Gumbel(0,1)	Perturb 0.01*Gumbel(0,1)
	0.61		
0.001	(min=0.56/		
	max=0.68)	-	-
	Guerreiro and Martins [2021]		
0.05	0.61	-	-
0.1	0.6117	-	-
0.5	0.635	-	-
		0.70718	0.7117
1	0.6533	(min=0.6729/	(min=0.6984/
		max=0.7209)	max=0.728)
1.5	0.6364	?	?

Table: Aspect0, F1 scores based on human annotations.

Experiments

Tuning on BeerAdvocate

Transition Spectra $N(0,1)$ (learn scores for $\log(\sigma_i)_1^L$) \rightarrow Normal cov)	
1.5 0.70866 0.63452 0.68268 0.677625	_
(0.6978/0.7281) (0.5834/0.663) (0.6458/0.7413) (0.6612/0.6968)	
0.6801 0.64132 68638 0.6559825	
(0.5801/0.7186) (0.626/0.6639) (0.6556/0.7303) (0.6348/0.7032)	
0.5 0.61838 0.61836 0.67396 0.63468	
(0.4129/0.7158) (0.6087/0.629) (0.6424/0.6951) (0.5914/0.6721)	
0.1 0.55624 0.63934 0.65266 0.63865	
(0.5614/0.6633) (0.6087/0.6646) (0.6154/0.6851) (0.6143/0.6634)	
0.01 0.54496 0.64322 0.6572 0.642525	
(0.4888/0.6031) (0.6226/0.6629) (0.631/0.6797) (0.6218/0.6764)	
0.001 0.51536 0.63962 0.63962 0.64352	
(0.4776/0.5479) $(0.6098/0.6382)$ $(0.6148/0.6745)$ $(0.6222/0.6693)$	
0 0.52728 0.62842 0.63834 0.64584	
(0.4802/0.5744) (0.5989/0.6486) (0.5832/0.6638) (0.6113/0.6857)	

Table: Aspect 1, F1 scores based on human annotations.

Experiments

Tuning on BeerAdvocate

Transition	Spectra	N(0,1)	0.001*G(0,1)	0.01*G(0,1)
1	0.6801	0.64132	0.70952	0.7122
	(0.5801/0.7186)	(0.626/0.6639)	(0.6729/0.7246)	(0.728/0.7009)
0.5	0.61838	0.61836	0.71314	0.7151
	(0.4129/0.7158)	(0.6087/0.629)	(0.7226/0.7003)	(0.6885/0.7348)
0.001	0.51536	0.63962	0.64686	0.63064
	(0.4776/0.5479)	(0.6098/0.6382)	(0.6279/0.668)	(0.6122/0.6513)
	0.1*G(0,1)	0.5*G(0,1)	1*G(0,1)	1.5*G(0,1)
1	0.68644	0.63594	0.59598	0.60566
	(0.6768/0.6902)	(0.6157/0.6695)	(0.6182/0.5444)	(0.5772/0.6211)
0.001	0.65962	0.60422	0.58788	0.57998
0.001	(0.6566/0.663)	(0.5832/0.6386)	(0.5672/0.5997)	(0.5241/0.6081)

Table: Aspect 1, F1 scores based on human annotations.

Bibliography I

- J. Bastings, W. Aziz, and I. Titov. Interpretable neural predictions with differentiable binary variables. arXiv preprint arXiv:1905.08160, 2019.
- A. Farinhas, W. Aziz, V. Niculae, and A. F. Martins. Sparse communication via mixed distributions. *arXiv preprint arXiv:2108.02658*, 2021.
- N. M. Guerreiro and A. F. Martins. Spectra: Sparse structured text rationalization. *arXiv preprint arXiv:2109.04552*, 2021.
- E. Jang, S. Gu, and B. Poole. Categorical reparameterization with gumbel-softmax. arXiv preprint arXiv:1611.01144, 2016.
- T. Lei, R. Barzilay, and T. Jaakkola. Rationalizing neural predictions. *arXiv preprint arXiv:1606.04155*, 2016.
- C. J. Maddison, A. Mnih, and Y. W. Teh. The concrete distribution: A continuous relaxation of discrete random variables. *arXiv preprint arXiv:1611.00712*, 2016.

Bibliography II

- T. Mihaylova, V. Niculae, and A. F. Martins. Understanding the mechanics of spigot: Surrogate gradients for latent structure learning. *arXiv preprint arXiv:2010.02357*, 2020.
- V. Niculae, A. Martins, M. Blondel, and C. Cardie. Sparsemap: Differentiable sparse structured inference. In *International Conference on Machine Learning*, pages 3799–3808. PMLR, 2018.
- M. Paulus, D. Choi, D. Tarlow, A. Krause, and C. J. Maddison. Gradient estimation with stochastic softmax tricks. Advances in Neural Information Processing Systems, 33:5691–5704, 2020.
- M. V. Treviso and A. F. Martins. The explanation game: Towards prediction explainability through sparse communication. arXiv preprint arXiv:2004.13876, 2020.