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Stochastic Rationalizer Models
Problem statement

Explainability and model transparency:

We are interested in making NN-based text classifiers interpretable
by training jointly

i) a latent model that selects a rationale, i.e. a short and
coherent extract of the input text, that serves as an
explanation to the end user,

ii) and a classifier that learns from the words of the rationale
alone.

Previous (most) related work: Lei et al. [2016], Bastings et al.
[2019], Treviso and Martins [2020], Guerreiro and Martins [2021].



Latent Structure Models

Consider a text classification setting with

a sentence of length L as input variable:
x = ⟨x1, ..., xL⟩ ∈ RD×L where D is the initial embedding size,

a discrete structured latent variable z that consists of a
combination of L binary parts that respect structural
constraints and indicate which words are present in the
rationale: z ∈ Z ⊂ {0, 1}L+constraints where Z is the set of
feasible configurations z satisfying certain given constraints,
and

a categorical output variable Y , indicating the sentence’s
class:

Y |z, x ∼ Cat(x⊙ z;θ).



Latent Structure Models

Deterministic

Identify an optimal ẑ(x,ϕ) and
optimize

min
θ,ϕ

− log p(y | x, ẑ(x,ϕ),θ).

Probabilistic

Assume Z ∼ p(z | x,ϕ) and
optimize

min
θ,ϕ

−Ez∼p(z|x,ϕ) log p(y | x, z,θ).



Representation of structure z in a factor graph

Using a factor graph with

variable nodes corresponding to tokens, and

factor nodes encoding dependencies between the variables,

we can represent each structure z as a bit vector az that has

one component per token indicating if it is part of z, and

additional components corresponding to factors that represent
the instantiation of constraints...



Representation of structure z in a factor graph

Assume that the L components z = ⟨z1, ..., zL⟩ that describe a
rationale satisfy

a global BUDGET constrain, i.e. a factor linked to all tokens
imposing that at most B of them can be selected, and

L− 1 pairwise factors for every pair of contiguous tokens.

The representation az is a d = 2L− 1-dimensional bit vector, with
d <<| Z |,

az ∈ {0, 1}2L−1 [az]i =

{
zi for i = 1, ..., L

zi−Lzi−L+1 for L < i ≤ 2L− 1

where zi = 1 if token i is present in the rationale, else 0, and
L∑

i=1
zi ≤ B.



Marginal Polytope

Given a vector s = ⟨si ⟩Li=1 of scores for the unary parts ⟨zi ⟩Li=1, we
assume that the score of the structure z is factored, so that
structures with common parts share the corresponding scores

score(az) =
L∑

i=1

sizi +
2L−1∑
i=L+1

rizi−Lzi−L+1+1BUDGET
1

= ηTaz

where ri ≥ 0 are constants encouraging contiguity, and η = [s, r]T.

Note that a NN architecture maps the input to scores
si = si (x;ϕ), and ϕ denotes collectively the NN parameters.

1For simplification of the exposition we do not include the Budget term in
the subsequent notation.



Marginal Polytope

Denote by A the d× | Z | matrix

whose columns are the representations az of each possible z,

which specifies fully the structure of the problem.

Hence, the | Z |-dim vector of all scores

S =


score(a1)

...
score(az)

...
score(a|Z|)

 = AT
|Z|×dηd×1 can be expressed in terms of

the common low dimensional parameter η.



Marginal Polytope

∆|Z| = {p ∈ R|Z|; 1Tp = 1, p ≥ 0}

where each component of p =


p1
...
pz
...

p|Z|

 is the probability of a

specific z.

The d = 2L− 1-dimensional marginal polytope (d <<| Z |)
defined as the convex hull:

MA = conv{a1, ..., a|Z|} = {Ad×|Z|p|Z|×1;p ∈ ∆|Z|}.



Deterministic Structured Oracles
Marginal Inference

Any point µ = Ap of the interior or MA corresponds to a
“canonical” parameter η that contains the scores and parametrizes
the Gibbs distribution:

p∗z = P [Z = z] ∝ exp(ηTaz).

p∗z is the structured equivalent of a component of the softmax that
corresponds to the realization z of the random structure Z .

So the full vector p∗ is the solution of the Shannon negetropy
regularized optimization problem (i.e. the variational formulation
of a CRF):

p∗ = argmax
p∈∆|Z|

⟨η,Ap⟩ − Ω(p) where Ω(p) =

|Z|∑
z=1

pz log pz.



Deterministic Structured Oracles
Marginal Inference

Denote

by Au the first L rows of A, and

by µu = Aup the first L elements of µ.

The marginal inference oracle is the µ∗
u part of µ∗ = Ap∗:

µ∗
u = MarginalA(η) = argmax

p∈∆|Z|

µu=Aup

ηTAp− Ω(p)

= argmax
p∈∆|Z|

µu=Aup

ηTµ− ΩA(µ)

where the maximization is over µ but the unary part µu is the
return value of interest.

Note that ΩA(µ) = Ω(p) does not have a closed form (Niculae
et al. [2018]).



Deterministic Structured Oracles
Marginal Inference

Hence, the marginal inference oracle is µ∗
u = Ep∗Z , the unary part

of the “mean” parameter of the Gibbs distribution, essentially the
unique marginal distributions of the parts ⟨zi ⟩Li=1 that correspond
to the Gibbs distribution (i.e. the distribution induced by the

(score) parameter η =

[
s
r

]
).



Deterministic Structured Oracles
MAP & SparseMAP: Regularizing by a squared l2 penalty

SparseMAP(η) = argmax
p∈∆|Z|

⟨η,Ap⟩ − 1

2
|| Aup ||2

= argmax
µ∈MA
µu=Aup

ηTµ− 1

2
|| µu ||2

where again the return value of interest is the optimum µu.

MAPA(η) = z∗ where z∗ is the first L components of

a∗z = argmax
z∈Z

ηTaz.



Deterministic Structured Oracles
Surrogate gradients

Using as an optimal structure

ẑ(x;ϕ) =


SparseMAPA(η)

or

MarginalA(η)

η =

[
s(x;ϕ)

r

]

in the loss function of the Categorical output Y ,

min
θ,ϕ

− log p(y | x, ẑ(x,ϕ),θ)

we can differentiate wrt ϕ.2

2Mihaylova et al. [2020]



Stochastic Latent Structures

Assuming a stochastic latent structure Z ∼ p(·;η(x,ϕ)) we need
to optimize the expected loss and compute

∇ϕEz∼pϕ − log p(y | x, z,θ).

Gumbel Max Trick: Motivation in the unstructured case: Let
Z ∼ Categorical(η) then Z = argmaxi (η + G )i where G is a
Gumbel(0,1) r.v.

The Gumbel max trick provides an alternative representation of the
Categorical r.v. Z as a transformation of a Gumbel r.v. G .

Note that the Gumbel-max formulation enables rewriting Ez∼pϕ

wrt the Gumbel r.v. EG∼Gumbel, however, ∇ϕz is still not
differentiable.



Stochastic Latent Structures

Gumbel Softmax Trick: Approximate the discrete r.v. Z with the
tempered softmax transformation of the Gumbel r.v. (Maddison
et al. [2016], Jang et al. [2016]):

Zτ = softmaxτ (η + G )
τ−→0−−−→ Z

Zτ ∼ Concrete.

We can generalize the Gumbel Softmax trick to structured Z
(Paulus et al. [2020]):

Z = argmax
p∈∆|Z|

⟨η + G ,Ap⟩ − Ω(p)

where Ω(p) is the Shannon negetropy.



Mixed Latent Structured Random Variables

We assume that Z follows the Gaussian-SparseMAP distribution
that can assign non-zero probability mass to the boundary of the
marginal polytope MA (Farinhas et al. [2021]). The distribution
has the following generative story:

generate an L-dim vector from the standard multivariate
Normal N ∼ N(0, IL×L),

perturb the scores of the L unary parts of the structure
representation az so that its score is

score(az) =

(
s+Σ−1/2N

r

)T

az = HTaz

where Σ can capture possible correlation between the unary
parts of the structure,

Z = SparseMAPA(H) is a sparse random vector that results
from a transformation of the random variable H.



Mixed Latent Structured Random Variables

Hence,

Z = argmax
p∈∆|Z|

µ=

µu

µf

=Ap

µu=Aup

⟨H,Ap⟩ − 1

2
|| Aup ||2

= argmax
µ∈MA

(s +Σ−1/2N)Tµu + rTµf −
1

2
|| µu ||2

the random structure Z is the Euclidean projection on the marginal
polytope MA of the normally perturbed unary scores. (Recall that
s = s(x;ϕ) depends on the input sentence x and the parameters
ϕ.)



Experiments
Tuning on BeerAdvocate

(Force)Budget=10, Temperature=0.05, downstream MSE is
< 0.02 across all experiments.

Transition Spectra
Perturb
0.001*Gumbel(0,1)

Perturb
0.01*Gumbel(0,1)

0.001

0.61
(min=0.56/
max=0.68)
Guerreiro and Martins [2021]

- -

0.05 0.61 - -
0.1 0.6117 - -
0.5 0.635 - -

1 0.6533
0.70718
(min=0.6729/
max=0.7209)

0.7117
(min=0.6984/
max=0.728)

1.5 0.6364 ? ?

Table: Aspect0, F1 scores based on human annotations.



Experiments
Tuning on BeerAdvocate

Transition Spectra
Perturb
N(0,1)

Diag Cov
(learn scores
for log(σi )

L
1)

Hadamard
(learned scores
× distance toepliz
−→ Normal cov)

1.5
0.70866
(0.6978/0.7281)

0.63452
(0.5834/0.663)

0.68268
(0.6458/0.7413)

0.677625
(0.6612/0.6968)

1
0.6801
(0.5801/0.7186)

0.64132
(0.626/0.6639)

68638
(0.6556/0.7303)

0.6559825
(0.6348/0.7032)

0.5
0.61838
(0.4129/0.7158)

0.61836
(0.6087/0.629)

0.67396
(0.6424/0.6951)

0.63468
(0.5914/0.6721)

0.1
0.55624
(0.5614/0.6633)

0.63934
(0.6087/0.6646)

0.65266
(0.6154/0.6851)

0.63865
(0.6143/0.6634)

0.01
0.54496
(0.4888/0.6031)

0.64322
(0.6226/0.6629)

0.6572
(0.631/0.6797)

0.642525
(0.6218/0.6764)

0.001
0.51536
(0.4776/0.5479)

0.63962
(0.6098/0.6382)

0.63962
(0.6148/0.6745)

0.64352
(0.6222/0.6693)

0
0.52728
(0.4802/0.5744)

0.62842
(0.5989/0.6486)

0.63834
(0.5832/0.6638)

0.64584
(0.6113/0.6857)

Table: Aspect 1, F1 scores based on human annotations.



Experiments
Tuning on BeerAdvocate

Transition Spectra N(0,1) 0.001*G(0,1) 0.01*G(0,1)

1
0.6801
(0.5801/0.7186)

0.64132
(0.626/0.6639)

0.70952
(0.6729/0.7246)

0.7122
(0.728/0.7009)

0.5
0.61838
(0.4129/0.7158)

0.61836
(0.6087/0.629)

0.71314
(0.7226/0.7003)

0.7151
(0.6885/0.7348)

0.001
0.51536
(0.4776/0.5479)

0.63962
(0.6098/0.6382)

0.64686
(0.6279/0.668)

0.63064
(0.6122/0.6513)

0.1*G(0,1) 0.5*G(0,1) 1*G(0,1) 1.5*G(0,1)

1
0.68644
(0.6768/0.6902)

0.63594
(0.6157/0.6695)

0.59598
(0.6182/0.5444)

0.60566
(0.5772/0.6211)

0.001
0.65962
(0.6566/0.663)

0.60422
(0.5832/0.6386)

0.58788
(0.5672/0.5997)

0.57998
(0.5241/0.6081)

Table: Aspect 1, F1 scores based on human annotations.
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