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Stochastic Rationalizer Models

Problem statement

Explainability and model transparency:

We are interested in making NN-based text classifiers interpretable
by training jointly
i) a latent model that selects a rationale, i.e. a short and
coherent extract of the input text, that serves as an
explanation to the end user,

ii) and a classifier that learns from the words of the rationale
alone.

Previous (most) related work: Lei et al. [2016], Bastings et al.
[2019], Treviso and Martins [2020], Guerreiro and Martins [2021].



Latent Structure Models

Consider a text classification setting with

@ a sentence of length L as input variable:
x = (x1,...,x.) € RP*L where D is the initial embedding size,

@ a discrete structured latent variable z that consists of a
combination of L binary parts that respect structural
constraints and indicate which words are present in the
rationale: z € Z C {0, 1}L+constraints \yhere Z is the set of
feasible configurations z satisfying certain given constraints,
and

@ a categorical output variable Y, indicating the sentence'’s
class:
Y|z,x ~ Cat(x ® z; 0).



Latent Structure Models

Deterministic Probabilistic
Identify an optimal 2(x, ¢) and Assume Z ~ p(z | x,¢) and
optimize optimize
min —log p(y | x,2(x, ¢),6). min —Fzpaix.4) 108 Py | X,2,0).




Representation of structure z in a factor graph

Using a factor graph with

@ variable nodes corresponding to tokens, and

@ factor nodes encoding dependencies between the variables,
we can represent each structure z as a bit vector a, that has

@ one component per token indicating if it is part of z, and

@ additional components corresponding to factors that represent
the instantiation of constraints...



Representation of structure z in a factor graph

Assume that the L components z = (z1, ..., z;) that describe a
rationale satisfy

@ a global BUDGET constrain, i.e. a factor linked to all tokens
imposing that at most B of them can be selected, and

o L — 1 pairwise factors for every pair of contiguous tokens.

The representation a, is a d = 2L — 1-dimensional bit vector, with
d<<| 2],

z; fori=1,...,L

a, €{0,1}°L7! [a,]; = {

Zi_1Zi—[4+1 for L<i<2L-1

where z; = 1 if token 7 is present in the rationale, else 0, and

L
>z < B.
i=1



Marginal Polytope

Given a vector s = (s;)k_, of scores for the unary parts (z;)L |, we
assume that the score of the structure z is factored, so that
structures with common parts share the corresponding scores

L 2L—-1
1
score(az)zg sizi + E rizi—1Zi—(41+ lBUDceT
i=1 i=L+1
T
:’r’ aZ

where r; > 0 are constants encouraging contiguity, and 1 = [s,¢]".

Note that a NN architecture maps the input to scores
si = si(x; ¢), and ¢ denotes collectively the NN parameters.

1For simplification of the exposition we do not include the Budget term in
the subsequent notation.



Marginal Polytope

Denote by A the dx | Z | matrix
@ whose columns are the representations a, of each possible z,

@ which specifies fully the structure of the problem.

Hence, the | Z |-dim vector of all scores
score(as)

S = | score(ay) | = A‘Tz‘xdndxl can be expressed in terms of

score(a|z|)
the common low dimensional parameter 7.



Marginal Polytope

Al ={p eRI®;1Tp=1,p >0}
P1
where each component of p= | p, | is the probability of a
Piz|
specific z.

The d = 2L — 1-dimensional marginal polytope (d <<| Z |)
defined as the convex hull:

Ma = conv{ay, ..., 3z} = {Adx|ziP|zx1: P € AP}



Deterministic Structured Oracles

Marginal Inference

Any point . = Ap of the interior or M4 corresponds to a
“canonical” parameter i that contains the scores and parametrizes
the Gibbs distribution:

p; = P[Z = z] x exp(n'a,).

p; is the structured equivalent of a component of the softmax that
corresponds to the realization z of the random structure Z.

So the full vector p* is the solution of the Shannon negetropy
regularized optimization problem (i.e. the variational formulation
of a CRF):

12|

p* = argmax(n, Ap) — Q(p) where Q(p) = > p,logp,.
peAlZl z=1



Deterministic Structured Oracles

Marginal Inference

Denote
@ by A, the first L rows of A, and
@ by p, = A,p the first L elements of p.
The marginal inference oracle is the u, part of u* = Ap™:
w! = Marginal 4(n) = argmaxn' Ap — Q(p)
p€A|Z\
By=Aup
= argmaxn ' p — Qa(p)

By=Aup

where the maximization is over p but the unary part p,, is the
return value of interest.

Note that Qa(p) = Q(p) does not have a closed form (Niculae
et al. [2018]).



Deterministic Structured Oracles

Marginal Inference

Hence, the marginal inference oracle is p}, = [Ep«Z, the unary part
of the “mean” parameter of the Gibbs distribution, essentially the
unique marginal distributions of the parts (z)%_, that correspond

to the Gibbs distribution (i.e. the distribution induced by the

(score) parameter n = [:] ).



Deterministic Structured Oracles

MAP & SparseMAP: Regularizing by a squared h penalty

1
SparseMAP(n) = argmax(n, Ap) — = || Aup ||?
peAlZ| 2

1
= argmaxn' g — o || sy ||
HEMY
Hu:AuP

where again the return value of interest is the optimum p,,.
MAP 4(n) = z* where z* is the first L components of

* T
a, = argmax1 a;.
zeZ



Deterministic Structured Oracles

Surrogate gradients

Using as an optimal structure

SparseMAP 4(n) _
2(x; ) = { or n= [S(X;d))}
Marginal 4(n)

in the loss function of the Categorical output Y,

min— log p(y | x, 2(x, 9),0)

9

we can differentiate wrt ¢.2

*Mihaylova et al. [2020]



Stochastic Latent Structures

Assuming a stochastic latent structure Z ~ p(+; n(x, ¢)) we need
to optimize the expected loss and compute

VEzp, —logp(y | x,2,0).

Gumbel Max Trick: Motivation in the unstructured case: Let
Z ~ Categorical(n) then Z = argmax;(n + G); where G is a
Gumbel(0,1) r.v.

The Gumbel max trick provides an alternative representation of the
Categorical r.v. Z as a transformation of a Gumbel r.v. G.

Note that the Gumbel-max formulation enables rewriting E,p,
wrt the Gumbel r.v. IEGGumbel, however, V42 is still not
differentiable.



Stochastic Latent Structures

Gumbel Softmax Trick: Approximate the discrete r.v. Z with the
tempered softmax transformation of the Gumbel r.v. (Maddison
et al. [2016], Jang et al. [2016]):

Z; = softmax,(n + G) =% 7

Z. ~ Concrete.

We can generalize the Gumbel Softmax trick to structured Z
(Paulus et al. [2020]):

Z = argmax(n + G, Ap) — Q(p)
peAlZ|

where Q(p) is the Shannon negetropy.



Mixed Latent Structured Random Variables

We assume that Z follows the Gaussian-SparseMAP distribution
that can assign non-zero probability mass to the boundary of the
marginal polytope M4 (Farinhas et al. [2021]). The distribution
has the following generative story:
@ generate an L-dim vector from the standard multivariate
Normal N ~ N(0, 1),
@ perturb the scores of the L unary parts of the structure
representation a, so that its score is

—1/2pN\ T
score(az) = (S T Zr N> a,=H'a,

where ¥ can capture possible correlation between the unary
parts of the structure,

@ Z = SparseMAP 4(H) is a sparse random vector that results
from a transformation of the random variable H.



Mixed Latent Structured Random Variables

Hence,

1
Z= argmax (H.Ap)— || Awp |
p€A|Z\

. [uu} o
1223

By=Aup

= argmax(s + X Y2N) Ty, +r uf—*Huqu
HEM 4

the random structure Z is the Euclidean projection on the marginal
polytope M4 of the normally perturbed unary scores. (Recall that
s = s(x; ¢) depends on the input sentence x and the parameters

.)



Experiments

Tuning on BeerAdvocate

(Force)Budget=10, Temperature=0.05, downstream MSE is
< 0.02 across all experiments.

Transition | Spectra Perturb Perturb
0.001*Gumbel(0,1)  0.01*Gumbel(0,1)
0.61
(min=0.56/
0.001 max=0.68) ) )
Guerreiro and Martins [2021]
0.05 0.61 - -
0.1 0.6117 - -
0.5 0.635 - -
0.70718 0.7117
1 0.6533 (min=0.6729/ (min=0.6984/
max=0.7209) max=0.728)
15 0.6364 ? ?

Table: AspectO, F1 scores based on human annotations.



Experiments

Tuning on BeerAdvocate

Hadamard

Diag Cov
Transition | Spectra Perturb (learn scores (Iearned scores
N(0,1) for log(c)}) x distance toepliz
1 — Normal cov)
15 0.70866 0.63452 0.68268 0.677625
' (0.6978/0.7281) (0.5834/0.663)  (0.6458/0.7413) (0.6612/0.6968)
1 0.6801 0.64132 68638 0.6559825
(0.5801/0.7186) (0.626/0.6639)  (0.6556/0.7303) (0.6348/0.7032)
05 0.61838 0.61836 0.67396 0.63468
' (0.4129/0.7158) (0.6087/0.629)  (0.6424/0.6951) (0.5914/0.6721)
01 0.55624 0.63934 0.65266 0.63865
' (0.5614/0.6633) (0.6087,/0.6646) (0.6154/0.6851) (0.6143/0.6634)
0.01 0.54496 0.64322 0.6572 0.642525
' (0.4888/0.6031) (0.6226/0.6629) (0.631/0.6797)  (0.6218/0.6764)
0.001 0.51536 0.63962 0.63962 0.64352
(0.4776/0.5479) (0.6098/0.6382) (0.6148/0.6745) (0.6222/0.6693)
0 0.52728 0.62842 0.63834 0.64584

(0.4802/0.5744)

(0.5989,/0.6486)

(0.5832/0.6638)

(0.6113/0.6857)

Table: Aspect 1, F1 scores based on human annotations.



Experiments

Tuning on BeerAdvocate

Transition | Spectra N(0,1) 0.001*G(0,1)  0.01*G(0,1)
) 0.6801 0.64132 0.70952 0.7122
(0.5801/0.7186) (0.626/0.6639)  (0.6729/0.7246) (0.728/0.7009)
05 0.61838 0.61836 0.71314 0.7151
' (0.4129/0.7158)  (0.6087/0.629)  (0.7226/0.7003) (0.6885/0.7348)
0.001 051536 0.63962 0.64686 0.63064
' (0.4776/0.5479)  (0.6098/0.6382) (0.6279/0.668)  (0.6122/0.6513)
0.1*G(0,1) 0.5*G(0,1) 1*G(0,1) 1.5%G(0,1)
0.68644 0.63504 059508 0.60566
1
(0.6768/0.6902) (0.6157/0.6695) (0.6182/0.5444) (0.5772/0.6211)
0.65962 0.60422 0.58788 0.57998

0.001

(0.6566/0.663)  (0.5832/0.6386) (0.5672/0.5997) (0.5241/0.6081)

Table: Aspect 1, F1 scores based on human annotations.



Bibliography |

J. Bastings, W. Aziz, and |. Titov. Interpretable neural predictions
with differentiable binary variables. arXiv preprint
arXiv:1905.08160, 2019.

A. Farinhas, W. Aziz, V. Niculae, and A. F. Martins. Sparse
communication via mixed distributions. arXiv preprint
arXiv:2108.02658, 2021.

N. M. Guerreiro and A. F. Martins. Spectra: Sparse structured
text rationalization. arXiv preprint arXiv:2109.04552, 2021.

E. Jang, S. Gu, and B. Poole. Categorical reparameterization with
gumbel-softmax. arXiv preprint arXiv:1611.01144, 2016.

T. Lei, R. Barzilay, and T. Jaakkola. Rationalizing neural
predictions. arXiv preprint arXiv:1606.04155, 2016.

C. J. Maddison, A. Mnih, and Y. W. Teh. The concrete
distribution: A continuous relaxation of discrete random
variables. arXiv preprint arXiv:1611.00712, 2016.



Bibliography Il

T. Mihaylova, V. Niculae, and A. F. Martins. Understanding the
mechanics of spigot: Surrogate gradients for latent structure
learning. arXiv preprint arXiv:2010.02357, 2020.

V. Niculae, A. Martins, M. Blondel, and C. Cardie. Sparsemap:
Differentiable sparse structured inference. In International
Conference on Machine Learning, pages 3799-3808. PMLR,
2018.

M. Paulus, D. Choi, D. Tarlow, A. Krause, and C. J. Maddison.

Gradient estimation with stochastic softmax tricks. Advances in
Neural Information Processing Systems, 33:5691-5704, 2020.

M. V. Treviso and A. F. Martins. The explanation game: Towards
prediction explainability through sparse communication. arXiv
preprint arXiv:2004.13876, 2020.



	Bibliography
	References

