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1 Stochastic Rationalizer Models

Problem statement
Explainability and model transparency: We are interested in making NN-based text classifiers
interpretable by training jointly
i) a latent model that selects a rationale, i.e. a short and coherent extract of the input text,
that serves as an explanation to the end user,
ii) and a classifier that learns from the words of the rationale alone.

Previous (most) related work: |Lei et al. [2016], Bastings et al.|[2019], |Treviso and Martins [2020],
Guerreiro and Martins| [2021].

2 Latent Structure Models

Consider a text classification setting with
e input variable a sentence of length L: x = (xy,...,x1) € RP*L where D is the initial
embedding size,

e a discrete structured latent variable z that consists of a combination of L binary parts
that respect structural constraints and indicate which words are present in the rationale:
z ¢ Z c {0,1}* where Z is the set of feasible configurations z satisfying certain given
constraints, and

e a categorical output variable Y, indicating the sentence’s class:

Ylz,x ~ Cat(x © z;0).

Deterministic Probabilistic

Identify an optimal z(x, ¢) and optimize Assume Z ~ p(z | x, ¢) and optimize

Ienl(gl - lng(y | X, 2()(7 ¢)7 9) ng,ud{l _Ez~p(z|x,¢) 1ng(y | X, Z, 0)



3 Representation of structure z in a factor graph

Using a factor graph with

e variable nodes corresponding to tokens, and

e factor nodes encoding dependencies between the variables,
we can represent each structure z as a bit vector a, that has

e one component per token indicating if it is part of z, and

e additional components corresponding to factors that represent the instantiation of con-
straints.

Assume that the L components z = (21, ..., 21} that describe a rationale satisfy

e a global BUDGET constrain, i.e. a factor linked to all tokens imposing that at most B of
them can be selected, and

e [ —1 pairwise factors for every pair of contiguous tokens.

The representation a, is d = 2L — 1-dimensional bit vector, d <<| Z |,

a, € {01121 [a,], = 2; fori=1,...,L
‘ 7 o Zi—LZi—L+1 for L<i<2L-1

L
where z; = 1 if token 7 is present in the rationale, else 0, and Y z; < B.
i=1

4 Marginal Polytope

Given a vector s = (s;)% | of scores for the unary parts (z;)Z, it is assumed that the score of the
structure z is factored, so that structures with common parts share the corresponding scores

L 2L-1
score(a,) = ZSiZi + Z TiZieLZieL+1

i=1 i=L+1

T
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where 7; > 0 are constants encouraging contiguity, and 1 = [s, r]T. Note that a NN architecture
maps the input to scores s; = s;(x; ¢), and ¢ denotes collectively the NN parameters.

Denote by A the dx | Z | matrix

e whose columns are the representations a, of each possible z,

e which specifies fully the structure of the problem.

score(a;)
Hence, the | Z |-dim vector of all scores S = | score(a,) | = A|£,7|><dnd><1 can be expressed in terms

score(a|z|)
of the common low dimensional parameter 7.

This factorization assumption provides a way to replace the simplex
AZl={p eRF:1Tp=1,p>0}
n
where each component of p = p:z is the probability of a specific z, with the d = 2L - 1-
P|.Z|
dimensional marginal polytope (d <<| Z |) defined as the convex hull:

My =conv{ay,...,az} = {Adx|g|p|z|xl; pe A|Z|}.

5 Deterministic Structured Oracles

5.1 Marginal Inference

Any point p = Ap of the interior or M 4 corresponds to a “canonical” parameter 1 that contains
the scores and parametrizes the Gibbs distribution

p; = P[Z =2] <exp(n”a,).

p; is the structured equivalent of a component of the softmax that corresponds to the realization
z of the random structure Z. So the full vector p* is the solution of the Shannon negetropy

LFor simplification of the exposition we do not include the Budget term in the subsequent notation.



regularized optimization problem
2]
p* = argmax(n, Ap) - Q(p) where Q(p) = )" p,logp,.
z=1

peAlZl

Denote

e by A, the first L rows of A, and

e by u, = A,p the first L elements of p.

The marginal inference oracle is the p} part of pu* = Ap*:

p) = Marginal ,(n) = argmaxn® Ap — Q(p)
eAlZl
Npu:AuP

= argmaxn’ - Qa(p)
peAlZ‘
By =Aup

where the maximization is over p bu the unary part p,, is the return value of interest. Note that
Qa(p) =Q(p) does not have a closed form.

Hence the marginal inference oracle is p = [Ep«Z the unary part of the “mean” parameter
of the Gibbs distribution, essentially the unique marginal distributions of the parts (z;)%, that

correspond to the Gibbs distribution (i.e. induced by its (score) parameter 1 = [j)

5.2 SparseMAP

Regularizing by a squared [, penalty:

1
SparseMAP(n) = argmax(n, Ap) - = || Aup ||
peA\Z| 2
1 2
= argmaxn g = || b, ||
peMy
By =Aup

where again the return value of interest is the optimum p,,.

5.3 MAP

MAP 4(n) = z* where z* is the first L components of

a; = argmaxn'a,.
zeZ

4



5.4 Surrogate gradients (Mihaylova et al.| [2020])

Using as an optimal structure

SparseMAP ,(n)
2(x:6) = {on n- [

s(x; ¢)]
Marginal 4, (n)

in the loss function of the Categorical output Y,
Iggl - logp(y | X, i(X, ¢)7 0)

we can differentiate wrt ¢.

6 Stochastic Latent Structures

Assuming a stochastic latent structure Z ~ p(-;m(x,¢)) we need to optimize the expected loss
and compute
VeE;p, —log P(y|x,2,0).

Gumbel Max Trick: Motivation in the unstructured case: Let Z ~ Categorical(n) then Z =
argmax,(n + G); where G is a Gumbel(0,1) r.v.

The Gumbel max trick provides an alternative representation of the Categorical r.v. Z as a
transformation of a Gumbel r.v. G. Note that the Gumbel-max formulation enables rewriting

E wrt the Gumbel r.v. Eq.gumbel, however, V,z is still not differentiable.

Z~p¢.

Gumbel Softmax Trick: Approximate the discrete r.v. Z with the tempered softmax transforma-
tion of the Gumbel r.v. (Maddison et al. [2016], Jang et al.|[2016]):

Z, = softmax.(n + G) =z

Z, ~ Concrete.

We can generalize the Gumbel Softmax trick to structured Z (Paulus et al.| [2020]):

Z =argmax(n + G, Ap) - Q(p)

peA\Z\

where Q(p) is the Shannon negetropy.



7 Mixed Latent Structured Random Variables

We assume that Z follows the Gaussian-SparseMAP distribution that can assign non-zero proba-
bility mass to the boundary of the marginal polytope M 4 (Farinhas et al.|[2021]). The distribution
has the following generative story:

e generate an L-dim vector from the standard multivariate Normal N ~ N(0,1...),

e perturb the scores of the L unary parts of the structure representation a, so that its score
is
s+XI2N

T
) a,=H"a,
r

score(a,) = (

where > can capture possible correlation between the unary parts of the structure,

e 7 =SparseMAP ,(H) is a sparse random vector that results from a transformation of the
random variable H.

Hence,

1
Z = argmax (H,Ap) - | Aup |
peA'Z‘ 2

“:[uu]z o
Ky

By=Aup
1
= argmax(s + X7 N) T, + Ty - o |y, P
[,LEMA 2
the random structure Z is the Euclidean projection on the marginal polytope M 4 of the normally
perturbed unary scores. (Recall that s = s(x;¢) depends on the input sentence x and the
parameters ¢.)
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