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1 Stochastic Rationalizer Models

Problem statement

Explainability and model transparency: We are interested in making NN-based text classifiers

interpretable by training jointly

i) a latent model that selects a rationale, i.e. a short and coherent extract of the input text,

that serves as an explanation to the end user,

ii) and a classifier that learns from the words of the rationale alone.

Previous (most) related work: Lei et al. [2016], Bastings et al. [2019], Treviso and Martins [2020],

Guerreiro and Martins [2021].

2 Latent Structure Models

Consider a text classification setting with

• input variable a sentence of length L: x = ⟨x1, ..., xL⟩ ∈ R
D×L where D is the initial

embedding size,

• a discrete structured latent variable z that consists of a combination of L binary parts

that respect structural constraints and indicate which words are present in the rationale:

z ∈ Z ⊂ {0,1}L where Z is the set of feasible configurations z satisfying certain given

constraints, and

• a categorical output variable Y , indicating the sentence’s class:

Y ∣z,x ∼ Cat(x⊙ z;θ).

Deterministic

Identify an optimal ẑ(x,ϕ) and optimize

min
θ,ϕ
− log p(y ∣ x, ẑ(x,ϕ),θ).

Probabilistic

Assume Z ∼ p(z ∣ x,ϕ) and optimize

min
θ,ϕ
−Ez∼p(z∣x,ϕ) log p(y ∣ x, z,θ).
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3 Representation of structure z in a factor graph

Using a factor graph with

• variable nodes corresponding to tokens, and

• factor nodes encoding dependencies between the variables,

we can represent each structure z as a bit vector az that has

• one component per token indicating if it is part of z, and

• additional components corresponding to factors that represent the instantiation of con-

straints.

Assume that the L components z = ⟨z1, ..., zL⟩ that describe a rationale satisfy

• a global BUDGET constrain, i.e. a factor linked to all tokens imposing that at most B of

them can be selected, and

• L − 1 pairwise factors for every pair of contiguous tokens.

The representation az is d = 2L − 1-dimensional bit vector, d <<∣ Z ∣,

az ∈ {0,1}
2L−1 [az]i =

⎧⎪⎪
⎨
⎪⎪⎩

zi for i = 1, ..., L

zi−Lzi−L+1 for L < i ≤ 2L − 1

where zi = 1 if token i is present in the rationale, else 0, and
L

∑
i=1

zi ≤ B.

4 Marginal Polytope

Given a vector s = ⟨si⟩Li=1 of scores for the unary parts ⟨zi⟩Li=1 it is assumed that the score of the

structure z is factored, so that structures with common parts share the corresponding scores

score(az) =
L

∑
i=1

sizi +
2L−1
∑

i=L+1
rizi−Lzi−L+1+1BUDGET

1

= ηTaz
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where ri ≥ 0 are constants encouraging contiguity, and η = [s, r]T. Note that a NN architecture

maps the input to scores si = si(x;ϕ), and ϕ denotes collectively the NN parameters.

Denote by A the d× ∣ Z ∣ matrix

• whose columns are the representations az of each possible z,

• which specifies fully the structure of the problem.

Hence, the ∣ Z ∣-dim vector of all scores S =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

score(a1)

⋮

score(az)

⋮

score(a∣Z∣)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= AT
∣Z∣×dηd×1 can be expressed in terms

of the common low dimensional parameter η.

This factorization assumption provides a way to replace the simplex

∆∣Z∣ = {p ∈R∣Z∣;1Tp = 1, p ≥ 0}

where each component of p =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

p1
⋮

pz
⋮

p∣Z∣

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

is the probability of a specific z, with the d = 2L − 1-

dimensional marginal polytope (d <<∣ Z ∣) defined as the convex hull:

MA = conv{a1, ..., a∣Z∣} = {Ad×∣Z∣p∣Z∣×1;p ∈∆
∣Z∣}.

5 Deterministic Structured Oracles

5.1 Marginal Inference

Any point µ = Ap of the interior orMA corresponds to a “canonical” parameter η that contains

the scores and parametrizes the Gibbs distribution

p∗z = P [Z = z] ∝ exp(ηTaz).

p∗z is the structured equivalent of a component of the softmax that corresponds to the realization

z of the random structure Z. So the full vector p∗ is the solution of the Shannon negetropy

1For simplification of the exposition we do not include the Budget term in the subsequent notation.
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regularized optimization problem

p∗ = argmax
p∈∆∣Z∣

⟨η,Ap⟩ −Ω(p) where Ω(p) =
∣Z∣

∑
z=1

pz logpz.

Denote

• by Au the first L rows of A, and

• by µu = Aup the first L elements of µ.

The marginal inference oracle is the µ∗u part of µ∗ = Ap∗:

µ∗u =MarginalA(η) = argmax
p∈∆∣Z∣
µu=Aup

ηTAp −Ω(p)

= argmax
p∈∆∣Z∣
µu=Aup

ηTµ −ΩA(µ)

where the maximization is over µ bu the unary part µu is the return value of interest. Note that

ΩA(µ) = Ω(p) does not have a closed form.

Hence the marginal inference oracle is µ∗u = Ep∗Z the unary part of the “mean” parameter

of the Gibbs distribution, essentially the unique marginal distributions of the parts ⟨zi⟩Li=1 that

correspond to the Gibbs distribution (i.e. induced by its (score) parameter η = [
s

r
]).

5.2 SparseMAP

Regularizing by a squared l2 penalty:

SparseMAP(η) = argmax
p∈∆∣Z∣

⟨η,Ap⟩ −
1

2
∣∣ Aup ∣∣

= argmax
µ∈MA
µu=Aup

ηTµ −
1

2
∣∣ µu ∣∣

2

where again the return value of interest is the optimum µu.

5.3 MAP

MAPA(η) = z∗ where z∗ is the first L components of

a∗z = argmax
z∈Z

ηTaz.
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5.4 Surrogate gradients (Mihaylova et al. [2020])

Using as an optimal structure

ẑ(x;ϕ) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

SparseMAPA(η)

or

MarginalA(η)

η = [
s(x;ϕ)

r
]

in the loss function of the Categorical output Y ,

min
θ,ϕ
− log p(y ∣ x, ẑ(x,ϕ),θ)

we can differentiate wrt ϕ.

6 Stochastic Latent Structures

Assuming a stochastic latent structure Z ∼ p(⋅;η(x,ϕ)) we need to optimize the expected loss

and compute

∇ϕEz∼pϕ − logP (y ∣ x, z,θ).

Gumbel Max Trick: Motivation in the unstructured case: Let Z ∼ Categorical(η) then Z =

argmaxi(η +G)i where G is a Gumbel(0,1) r.v.

The Gumbel max trick provides an alternative representation of the Categorical r.v. Z as a

transformation of a Gumbel r.v. G. Note that the Gumbel-max formulation enables rewriting

Ez∼pϕ wrt the Gumbel r.v. EG∼Gumbel, however, ∇ϕz is still not differentiable.

Gumbel Softmax Trick: Approximate the discrete r.v. Z with the tempered softmax transforma-

tion of the Gumbel r.v. (Maddison et al. [2016], Jang et al. [2016]):

Zτ = softmaxτ(η +G)
τÐ→0
ÐÐ→ Z

Zτ ∼ Concrete.

We can generalize the Gumbel Softmax trick to structured Z (Paulus et al. [2020]):

Z = argmax
p∈∆∣Z∣

⟨η +G,Ap⟩ −Ω(p)

where Ω(p) is the Shannon negetropy.
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7 Mixed Latent Structured Random Variables

We assume that Z follows the Gaussian-SparseMAP distribution that can assign non-zero proba-

bility mass to the boundary of the marginal polytopeMA (Farinhas et al. [2021]). The distribution

has the following generative story:

• generate an L-dim vector from the standard multivariate Normal N ∼ N(0, IL×L),

• perturb the scores of the L unary parts of the structure representation az so that its score

is

score(az) = (
s +Σ−1/2N

r
)

T

az =H
Taz

where Σ can capture possible correlation between the unary parts of the structure,

• Z = SparseMAPA(H) is a sparse random vector that results from a transformation of the

random variable H.

Hence,

Z = argmax
p∈∆∣Z∣

µ=
⎡⎢⎢⎢⎢⎢⎣

µu

µf

⎤⎥⎥⎥⎥⎥⎦
=Ap

µu=Aup

⟨H,Ap⟩ −
1

2
∣∣ Aup ∣∣

= argmax
µ∈MA

(s +Σ−1/2N)Tµu + r
Tµf −

1

2
∣∣ µu ∣∣

2

the random structure Z is the Euclidean projection on the marginal polytopeMA of the normally

perturbed unary scores. (Recall that s = s(x;ϕ) depends on the input sentence x and the

parameters ϕ.)
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