Stochastic SparseMAP Notes

Sophia Sklaviadis

1 Stochastic Rationalizer Models

Problem statement

Explainability and model transparency: We are interested in making NN-based text classifiers interpretable by training jointly

- i) a latent model that selects a rationale, i.e. a short and coherent extract of the input text, that serves as an explanation to the end user,
- ii) and a classifier that learns from the words of the rationale alone.

Previous (most) related work: Lei et al. [2016], Bastings et al. [2019], Treviso and Martins [2020], Guerreiro and Martins [2021].

2 Latent Structure Models

Consider a text classification setting with

- input variable a sentence of length L: $\mathbf{x} = \langle x_1, ..., x_L \rangle \in \mathbb{R}^{D \times L}$ where D is the initial embedding size,
- a discrete structured latent variable ${\bf z}$ that consists of a combination of L binary parts that respect structural constraints and indicate which words are present in the rationale: ${\bf z} \in \mathcal{Z} \subset \{0,1\}^L$ where \mathcal{Z} is the set of feasible configurations ${\bf z}$ satisfying certain given constraints, and
- \bullet a categorical output variable Y, indicating the sentence's class:

$$Y|\mathbf{z}, \mathbf{x} \sim \operatorname{Cat}(\mathbf{x} \odot \mathbf{z}; \boldsymbol{\theta}).$$

Deterministic

Identify an optimal $\hat{\mathbf{z}}(\mathbf{x},\phi)$ and optimize

$$\min_{\boldsymbol{\theta}, \boldsymbol{\phi}} -\log p(y \mid \mathbf{x}, \hat{\mathbf{z}}(\mathbf{x}, \boldsymbol{\phi}), \boldsymbol{\theta}).$$

Probabilistic

Assume $Z \sim p(\mathbf{z} \mid \mathbf{x}, \boldsymbol{\phi})$ and optimize $\min_{\boldsymbol{\theta}, \boldsymbol{\phi}} - \mathbb{E}_{\mathbf{z} \sim p(\mathbf{z} \mid \mathbf{x}, \boldsymbol{\phi})} \log p(y \mid \mathbf{x}, \mathbf{z}, \boldsymbol{\theta}).$

3 Representation of structure z in a factor graph

Using a factor graph with

- variable nodes corresponding to tokens, and
- factor nodes encoding dependencies between the variables,

we can represent each structure z as a bit vector a_z that has

- one component per token indicating if it is part of z, and
- additional components corresponding to factors that represent the instantiation of constraints.

Assume that the L components $\mathbf{z} = \langle z_1, ..., z_L \rangle$ that describe a rationale satisfy

- a global BUDGET constrain, i.e. a factor linked to all tokens imposing that at most B of them can be selected, and
- ullet L-1 pairwise factors for every pair of contiguous tokens.

The representation $\mathbf{a_z}$ is d = 2L - 1-dimensional bit vector, $d \ll |\mathcal{Z}|$,

$$\mathbf{a_z} \in \{0,1\}^{2L-1} \quad [\mathbf{a_z}]_i = \begin{cases} z_i & \text{for } i=1,...,L \\ z_{i-L}z_{i-L+1} & \text{for } L < i \leq 2L-1 \end{cases}$$

where z_i = 1 if token i is present in the rationale, else 0, and $\sum\limits_{i=1}^{L}z_i \leq B$.

4 Marginal Polytope

Given a vector $\mathbf{s} = \langle s_i \rangle_{i=1}^L$ of scores for the unary parts $\langle z_i \rangle_{i=1}^L$ it is assumed that the score of the structure \mathbf{z} is factored, so that structures with common parts share the corresponding scores

$$score(\mathbf{a_z}) = \sum_{i=1}^{L} s_i z_i + \sum_{i=L+1}^{2L-1} r_i z_{i-L} z_{i-L+1} + \mathbb{1}_{\text{BUDGET}}^{\text{BUDGET}}$$

$$= \boldsymbol{\eta}^{\text{T}} \mathbf{a_z}$$

where $r_i \ge 0$ are constants encouraging contiguity, and $\eta = [\mathbf{s}, \mathbf{r}]^T$. Note that a NN architecture maps the input to scores $s_i = s_i(\mathbf{x}; \phi)$, and ϕ denotes collectively the NN parameters.

Denote by A the $d \times |\mathcal{Z}|$ matrix

- whose columns are the representations a_z of each possible z,
- which specifies fully the structure of the problem.

Hence, the $\mid \mathcal{Z} \mid$ -dim vector of all scores $\mathbf{S} = \begin{pmatrix} \operatorname{score}(\mathbf{a}_1) \\ \vdots \\ \operatorname{score}(\mathbf{a}_z) \\ \vdots \\ \operatorname{score}(\mathbf{a}_{\mid \mathcal{Z}\mid}) \end{pmatrix} = A_{\mid \mathcal{Z}\mid \times d}^{\mathrm{T}} \boldsymbol{\eta}_{d \times 1} \text{ can be expressed in terms}$

of the common low dimensional parameter η

This factorization assumption provides a way to replace the simplex

$$\Delta^{|\mathcal{Z}|} = \{ \mathbf{p} \in \mathbb{R}^{|\mathcal{Z}|}; \mathbf{1}^{\mathrm{T}} \mathbf{p} = 1, p \ge 0 \}$$

where each component of $\mathbf{p} = \begin{pmatrix} p_1 \\ \vdots \\ p_{\mathbf{z}} \\ \vdots \\ p_{|\mathcal{Z}|} \end{pmatrix}$ is the probability of a specific \mathbf{z} , with the d=2L-1-dimensional marginal polytope $(d<<|\mathcal{Z}|)$ defined as the convex hull:

$$\mathcal{M}_A = \operatorname{conv}\{a_1, ..., a_{|\mathcal{Z}|}\} = \{A_{d \times |\mathcal{Z}|} \mathbf{p}_{|\mathcal{Z}| \times 1}; \mathbf{p} \in \Delta^{|\mathcal{Z}|}\}.$$

5 Deterministic Structured Oracles

5.1 Marginal Inference

Any point $\mu = A\mathbf{p}$ of the interior or \mathcal{M}_A corresponds to a "canonical" parameter η that contains the scores and parametrizes the Gibbs distribution

$$\mathbf{p}_{\mathbf{z}}^* = P[Z = \mathbf{z}] \propto \exp(\boldsymbol{\eta}^{\mathrm{T}} \mathbf{a}_{\mathbf{z}}).$$

 $\mathbf{p}_{\mathbf{z}}^{*}$ is the structured equivalent of a component of the softmax that corresponds to the realization \mathbf{z} of the random structure Z. So the full vector \mathbf{p}^{*} is the solution of the Shannon negetropy

 $^{^{1}}$ For simplification of the exposition we do not include the Budget term in the subsequent notation.

regularized optimization problem

$$\mathbf{p}^* = \underset{\mathbf{p} \in \Delta^{|\mathcal{Z}|}}{\operatorname{argmax}} \langle \boldsymbol{\eta}, A \mathbf{p} \rangle - \Omega(\mathbf{p}) \quad \text{where } \Omega(\mathbf{p}) = \sum_{\mathbf{z}=1}^{|\mathcal{Z}|} \mathbf{p}_{\mathbf{z}} \log \mathbf{p}_{\mathbf{z}}.$$

Denote

- by A_u the first L rows of A, and
- by $\mu_u = A_u \mathbf{p}$ the first L elements of μ .

The marginal inference oracle is the μ_u^* part of $\mu^* = A\mathbf{p}^*$:

$$\mu_{u}^{*} = \operatorname{Marginal}_{A}(\boldsymbol{\eta}) = \underset{\boldsymbol{\mu}_{u} = A_{u} \mathbf{p}}{\operatorname{argmax}} \boldsymbol{\eta}^{T} A \mathbf{p} - \Omega(\mathbf{p})$$

$$= \underset{\mathbf{p} \in \Delta^{|\mathcal{Z}|}}{\operatorname{argmax}} \boldsymbol{\eta}^{T} \boldsymbol{\mu} - \Omega_{A}(\boldsymbol{\mu})$$

$$= \underset{\boldsymbol{\mu}_{u} = A_{u} \mathbf{p}}{\operatorname{pe} \Delta^{|\mathcal{Z}|}}$$

where the maximization is over μ bu the unary part μ_u is the return value of interest. Note that $\Omega_A(\mu) = \Omega(\mathbf{p})$ does not have a closed form.

Hence the marginal inference oracle is $\mu_u^* = \mathbb{E}_{\mathbf{p}^*} Z$ the unary part of the "mean" parameter of the Gibbs distribution, essentially the unique marginal distributions of the parts $\langle z_i \rangle_{i=1}^L$ that correspond to the Gibbs distribution (i.e. induced by its (score) parameter $\eta = \begin{bmatrix} \mathbf{s} \\ \mathbf{r} \end{bmatrix}$).

5.2 SparseMAP

Regularizing by a squared l_2 penalty:

SparseMAP(
$$\boldsymbol{\eta}$$
) = $\underset{\mathbf{p} \in \Delta^{|\mathcal{Z}|}}{\operatorname{argmax}} \langle \boldsymbol{\eta}, A\mathbf{p} \rangle - \frac{1}{2} \parallel A_u \mathbf{p} \parallel$
= $\underset{\boldsymbol{\mu} \in \mathcal{M}_A}{\operatorname{argmax}} \boldsymbol{\eta}^{\mathrm{T}} \boldsymbol{\mu} - \frac{1}{2} \parallel \boldsymbol{\mu}_u \parallel^2$
 $\boldsymbol{\mu}_u = A_u \mathbf{p}$

where again the return value of interest is the optimum μ_u .

5.3 MAP

 $MAP_A(\eta) = \mathbf{z}^*$ where \mathbf{z}^* is the first L components of

$$\mathbf{a}_{\mathbf{z}}^* = \underset{\mathbf{z} \in \mathcal{Z}}{\operatorname{argmax}} \boldsymbol{\eta}^{\mathrm{T}} \mathbf{a}_{\mathbf{z}}.$$

5.4 Surrogate gradients (Mihaylova et al. [2020])

Using as an optimal structure

$$\hat{\mathbf{z}}(\mathbf{x}; \boldsymbol{\phi}) = \begin{cases} \text{SparseMAP}_{A}(\boldsymbol{\eta}) \\ \text{or} \\ \text{Marginal}_{A}(\boldsymbol{\eta}) \end{cases} \boldsymbol{\eta} = \begin{bmatrix} s(\mathbf{x}; \boldsymbol{\phi}) \\ \mathbf{r} \end{bmatrix}$$

in the loss function of the Categorical output Y,

$$\min_{\boldsymbol{\theta}, \boldsymbol{\phi}} -\log p(y \mid \mathbf{x}, \hat{\mathbf{z}}(\mathbf{x}, \boldsymbol{\phi}), \boldsymbol{\theta})$$

we can differentiate wrt ϕ .

6 Stochastic Latent Structures

Assuming a stochastic latent structure $Z \sim p(\cdot; \eta(\mathbf{x}, \phi))$ we need to optimize the expected loss and compute

$$\nabla_{\boldsymbol{\phi}} \mathbb{E}_{\mathbf{z} \sim p_{\boldsymbol{\phi}}} - \log P(y \mid \mathbf{x}, \mathbf{z}, \boldsymbol{\theta}).$$

<u>Gumbel Max Trick:</u> Motivation in the unstructured case: Let $Z \sim \operatorname{Categorical}(\eta)$ then $Z = \operatorname{argmax}_i(\eta + G)_i$ where G is a Gumbel(0,1) r.v.

The Gumbel max trick provides an alternative representation of the Categorical r.v. Z as a transformation of a Gumbel r.v. G. Note that the Gumbel-max formulation enables rewriting $\mathbb{E}_{\mathbf{z}\sim p_{\phi}}$ wrt the Gumbel r.v. $\mathbb{E}_{G\sim \mathrm{Gumbel}}$, however, $\nabla_{\phi}\mathbf{z}$ is still not differentiable.

<u>Gumbel Softmax Trick:</u> Approximate the discrete r.v. Z with the tempered softmax transformation of the Gumbel r.v. (Maddison et al. [2016], Jang et al. [2016]):

$$Z_{\tau} = \operatorname{softmax}_{\tau}(\boldsymbol{\eta} + G) \xrightarrow{\tau \to 0} Z$$

 $Z_{\tau} \sim \operatorname{Concrete.}$

We can generalize the Gumbel Softmax trick to structured Z (Paulus et al. [2020]):

$$Z = \underset{\mathbf{p} \in \Delta^{|\mathcal{Z}|}}{\operatorname{argmax}} \langle \boldsymbol{\eta} + G, A\mathbf{p} \rangle - \Omega(\mathbf{p})$$

where $\Omega(\mathbf{p})$ is the Shannon negetropy.

7 Mixed Latent Structured Random Variables

We assume that Z follows the Gaussian-SparseMAP distribution that can assign non-zero probability mass to the boundary of the marginal polytope \mathcal{M}_A (Farinhas et al. [2021]). The distribution has the following generative story:

- generate an L-dim vector from the standard multivariate Normal $N \sim N(\mathbf{0}, I_{L \times L})$,
- ullet perturb the scores of the L unary parts of the structure representation ${f a_z}$ so that its score is

$$score(\mathbf{a_z}) = \begin{pmatrix} \mathbf{s} + \Sigma^{-1/2} N \\ \mathbf{r} \end{pmatrix}^{\mathrm{T}} \mathbf{a_z} = H^{\mathrm{T}} \mathbf{a_z}$$

where Σ can capture possible correlation between the unary parts of the structure,

• $Z = \operatorname{SparseMAP}_A(H)$ is a sparse random vector that results from a transformation of the random variable H.

Hence,

$$Z = \underset{\mathbf{p} \in \Delta^{|\mathcal{Z}|}}{\operatorname{argmax}} \langle H, A\mathbf{p} \rangle - \frac{1}{2} \parallel A_{u}\mathbf{p} \parallel$$

$$\mu = \begin{bmatrix} \boldsymbol{\mu}_{u} \\ \boldsymbol{\mu}_{f} \end{bmatrix}_{=A\mathbf{p}}$$

$$\mu_{u} = A_{u}\mathbf{p}$$

$$= \underset{\boldsymbol{\mu} \in \mathcal{M}_{A}}{\operatorname{argmax}} (\boldsymbol{s} + \Sigma^{-1/2}N)^{\mathrm{T}} \boldsymbol{\mu}_{u} + \boldsymbol{r}^{\mathrm{T}} \boldsymbol{\mu}_{f} - \frac{1}{2} \parallel \boldsymbol{\mu}_{u} \parallel^{2}$$

the random structure Z is the Euclidean projection on the marginal polytope \mathcal{M}_A of the normally perturbed unary scores. (Recall that $\mathbf{s} = s(\mathbf{x}; \boldsymbol{\phi})$ depends on the input sentence \mathbf{x} and the parameters $\boldsymbol{\phi}$.)

References

- J. Bastings, W. Aziz, and I. Titov. Interpretable neural predictions with differentiable binary variables. arXiv preprint arXiv:1905.08160, 2019.
- A. Farinhas, W. Aziz, V. Niculae, and A. F. Martins. Sparse communication via mixed distributions. *arXiv preprint arXiv:2108.02658*, 2021.
- N. M. Guerreiro and A. F. Martins. Spectra: Sparse structured text rationalization. *arXiv preprint arXiv:2109.04552*, 2021.

- E. Jang, S. Gu, and B. Poole. Categorical reparameterization with gumbel-softmax. *arXiv preprint arXiv:1611.01144*, 2016.
- T. Lei, R. Barzilay, and T. Jaakkola. Rationalizing neural predictions. *arXiv preprint* arXiv:1606.04155, 2016.
- C. J. Maddison, A. Mnih, and Y. W. Teh. The concrete distribution: A continuous relaxation of discrete random variables. *arXiv* preprint *arXiv*:1611.00712, 2016.
- T. Mihaylova, V. Niculae, and A. F. Martins. Understanding the mechanics of spigot: Surrogate gradients for latent structure learning. *arXiv preprint arXiv:2010.02357*, 2020.
- M. Paulus, D. Choi, D. Tarlow, A. Krause, and C. J. Maddison. Gradient estimation with stochastic softmax tricks. *Advances in Neural Information Processing Systems*, 33:5691–5704, 2020.
- M. V. Treviso and A. F. Martins. The explanation game: Towards prediction explainability through sparse communication. *arXiv* preprint *arXiv*:2004.13876, 2020.