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Abstract

Principal component analysis (PCA) is a popular dimension reduction, visualization and

denoising method, most commonly applied under the assumption of Normally distributed

data. Tipping and Bishop [1999] derive classical PCA as a limiting case of probabilistic

PCA (PPCA).

To use PCA with discrete and non-Normally distributed data, Collins et al. [2001] extend

classical PCA to the Exponential family, while Li and Tao [2010] describe a general Ex-

pectation Maximization approach for probabilistic Exponential family PCA. To accomplish

variable selection alongside dimension reduction Lu et al. [2016] use a sparsity inducing

penalty on the loading matrix. Recently Zeng et al. [2022] use 0-inflated Logistic Normal

Multinomial (LNM) PPCA to circumvent sparse data, while Fang and Subedi [2023] use a

LNM mixture for clustering.

As an alternative, we model sparsity directly by further extending classical Exponential

family PCA to deformed exponential families through Fenchel-Young (FY) losses (Blondel

et al. [2020]). We compare LNM PPCA with classical Multinomial PCA and with Fenchel-

Young PCA on low dimensional data reconstruction and clustering in variably sparse data

settings, and show that FY PCA is a simple and efficient approach to modeling sparse,

discrete data, outperforming LNM PPCA. Finally, we derive a Fenchel-Young ELBO for

probabilistic FY PCA.

We first contextualize Collins et al. [2001]’s classical Exponential family PCA, implemented

through a degenerate version of EM (Murphy [2012], p.947), within the Probabilistic PCA setting

by first reviewing the probabilistic model from which Tipping and Bishop [1999] derive classical

PCA as a limiting case. We are then in a position to extend Collins et al. [2001]’s Bregman

divergence objective to Fenchel-Young losses where we can use Tsallis entropy with a = 2 to

fit classical Exponential family PCA to a sparse data matrix X with columns whose (deformed

Exponential family) densities lead to the Sparsemax loss (Martins and Astudillo [2016]). Further,

in the probabilistic setting of Exponential family PCA described abstractly by Li and Tao [2010],

we consider adding Normal priors on the columns of the latent factor matrix Z, leading to

Gaussian-Sparsemax latent variables and the FY ELBO objective.

FY PCA and probabilistic FY PCA are alternatives to the approaches previously proposed in

the literature on sparse PCA (classical: Zou et al. [2006], prob: Guan and Dy [2009], structured:

Jenatton et al. [2010], Exponential family: Lu et al. [2016], Logistic Normal Multinomial: Zeng

et al. [2022], etc.), which apply naturally to sparse (count) data.1

1In passing we mention the connection between Multinomial PCA and skipgram word embedding models,

e.g. Cotterell et al. [2017] interpret the skipgram model as Exponential family PCA without situating their

interpretation in a probabilistic PCA framework.
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1 Preliminaries

Suppose the observed data X forms a D×N matrix, whose nth column xn is the nth observation,

i.e. a realization of a D-dimensional random vector:

XD×N = [x1, ...,xN] =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

x11 . . . x1N

⋮

xD1 . . . xDN

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(1)

Let each xn follow an Exponential family distribution with natural parameter a D-dimensional

θn:

ΘD×N = [θ1, ...,θN] =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

θ11 . . . θ1N
⋮

θD1 . . . θDN

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(2)

We assume the matrix of natural parameters is factorized into a K ×N matrix Z of latent factors

or latent variables, where K is the dimensionality of the latent representation with K < D, and

a D ×K matrix W of parameters, often referred to as factor loadings: Θ =WD×KZK×N .2 So

for every observation xn ∈RD there is a corresponding latent variable zn ∈RK :

ZK×N = [z1, ...,zN] =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

z11 . . . z1N
⋮

zK1 . . . zKN

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, WD×K = [w1, ...,wK] =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

w11 . . .w1K

⋮

wD1 . . .wDK

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(3)

Θ =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

θ11 . . . θ1N
⋮

θD1 . . . θDN

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

w11 . . .w1K

⋮

wD1 . . .wDK

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

z11 . . . z1N
⋮

zK1 . . . zKN

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (4)

θn =

⎛
⎜
⎜
⎝

θ1n
⋮

θDn

⎞
⎟
⎟
⎠

=

⎛
⎜
⎜
⎝

w11z1n + ... +w1KzKn
⋮

wD1z1n + ... +wDKzKn

⎞
⎟
⎟
⎠

=

⎛
⎜
⎜
⎝

w11

⋮

wD1

⎞
⎟
⎟
⎠

z1n + ... +

⎛
⎜
⎜
⎝

w1K

⋮

wDK

⎞
⎟
⎟
⎠

zKn

=w1z1n + ... +wKzKn =
K

∑
k=1

wkzkn =WD×KznK×1 .

(5)

Given a “score vector” zn and loadings W, we model observation xn by an Exponential family

distribution with natural parameter θn:

xn ∣ zn,W ∼ Expon(θn) = Expon(
K

∑
k=1

wkzkn) (6)

2In Collins et al. [2001] each row of XT
N×D is made up of D independent random variables, and ΘT

=

ZTWT.
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Subject to this (low rank) factorization of Θ, the aim of probabilistic PCA is to maximize the

marginal likelihood of the observations, xn’s, assuming a prior over the latent variables and

integrating them out.

2 Everything Normal

Recall that in general 3

E(xi) = EzE(xi ∣ zi) = Ez(µ +Wzi) = µ +Wµ0

var(xi) = var(E(xi ∣ zi)) +Ez(var(xi ∣ zi))

= var(µ +Wzi) +Ez(σ
2I) =WΣ0W

T + σ2I

(7)

Consider now xi = µ +Wzi + ϵi with ϵi ∼ N(0, σ2I) where:

p(zi) = N(zi ∣ µ0,Σ0K×K)

p(xi ∣ zi,WD×K , σ
2) = N(µ +WD×KziK×1 , σ

2I)

(8)

The induced marginal is:

p(xi ∣W, σ2) = ∫ N(xi ∣ µ +Wzi, σ
2I)N(zi ∣ µ0,Σ0)dzi

= N(xi ∣ µ +Wµ0,WD×KΣ0K×KW
T
K×D + σ

2I)
(9)

Call the D ×D covariance matrix C =WΣ0WT + σ2I. Without loss of generality we can set

µ0 = 0 and Σ0 = I. 4 Notice that W then appears only in the covariance of the marginal. If the

data is centered we also have µ = 0.

Assuming p(zi) = N(0, I) and p(xi ∣ zi) = N(µ +Wzi, σ2I), we have an analytic expression

for the posterior of zi which is also Normal:

p(zi ∣ xi) = N(zi ∣mi,Σ)

Σ = (
σ2I +WTW

σ2
)

−1

= σ2(σ2I +WTW)−1 = σ2M−1
K×K

mi =Σ (W
T(σ2I)−1(xi −µ)) =M

−1WT(xi −µ)5

(10)

3McCulloch et al. [2001], pp. 10-12, and pp. 23-36; 4.7: Conditional Expected Value - Statistics Libre-

Texts, eqn.s 4.7.24-4.7.27.
4Cf. Murphy [2012], ch.12.
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where M = σ2I +WTW. Notice only mi depends on xi.

Tipping and Bishop [1999] derive MLEs for W and σ2 from p(xi ∣ W, σ2) and prove that

in the limiting case where σ2 → 0 the posterior mean reduces to mi = (WTW)−1WT(xi − µ)

because M →WTW.6 The columns of WML define the principal subspace of classical PCA,

and the posterior means mi represent the orthogonal projections of the data xi onto the latent

space.

2.1 Classical PCA

Classical PCA is usually stated from a complementary perspective to that of the generative model

in (7) and (8), as the projection of D-dimensional data to a lower K-dimensional linear subspace

(K <<D). When ZK×N =WT
K×DXD×N , the scores of each obsvervation along the kth principal

component, given by the kth row of ZK×N , are each written as a linear combination of the D

features with the kth principal component loadings as coefficients:7

[zk1, ..., zkN] = [w1kx11 + ... +wDkxD1, ...,w1kx1N + ... +wDkxDN] (11)

The ith column of ZK×N is the ith latent variable, corresponding to the ith observation.

We briefly mention the intuitive maximum variance interpretation of classical PCA.8 As-

suming that XD×N is centered, i.e. each column has zero mean, to compute the 1st principal

component, we look for the linear combination of the “feature values” with the form9

z1i = (w11, ...,wD1)

⎛
⎜
⎜
⎝

x1i

⋮

xDi

⎞
⎟
⎟
⎠

= (w11x1i + ... +wD1xDi) (12)

that has the largest variance subject to w2
11 + ... +w

2
D1 = 1, i.e.

max
w11,...,wD1

1

N

N

∑
i=1

z21i =max
N

∑
i=1
(w11x1i + ... +wD1xDi)

2 (13)

subject to
D

∑
d=1

w2
d1 = 1, and so on for subsequent, orthogonal principal components. This problem,

like the minimum error interpretation, to which it is equivalent, is similarly solved by singular

value decomposition of the sample covariance matrix (see e.g. Murphy [2012] §12.2.3).

5Using eq. 2.111 from Bishop [2006].
6Cf. Bishop [2006] §12.2.1; note there is a typo in the var of 12.42.
7There are N latent variables corresponding to the N observations. Confusingly, what is sometimes called

“factors” are the K principal components of the sample covariance matrix.
8Cf. James et al. [2013], p.509.
9Compare with §12.2 of James et al. [2013].
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Following Murphy [2012] §12.2.1, assuming for notational simplicity that data are centered,

i.e. xi have zero mean, we want an orthogonal set of K linear basis vectors wk ∈R
D and scores

zi ∈RK that have minimum average reconstruction error:

J =
1

N

N

∑
i=1
∣∣ xi − x̂i ∣∣

2 (14)

subject to W being orthonormal, where x̂i =Wzi. The optimal solution Ŵ is the matrix with

columns the K principal eigenvectors of the sample covariance matrix Σ̂ = 1
N

N

∑
i=1

xixT
i =

1
NXXT.

The optimal low dimensional encoding of the data is given by ẑi = ŴTxi(= Ŵ−1xi), which is the

orthogonal projection of the data onto the latent subspace defined by ŴT,10 and corresponds to

the MAP estimates m̂i in the limiting case when σ2 → 0 (and the data is centered to have zero

mean, and we constrain the loading matrix to be orthonormal).

3 Learning alternatives

Instead of maximizing the marginal likelihood p(xi ∣W, σ2) Collins et al. [2001] maximize the

likelihood of the conditional density p(xi ∣ zi), dropping the assumption that it follows a Normal

distribution, alternately w.r.t. WT and ZT, treating the latent variables as fixed unknown scores.

Alternatively, Li and Tao [2010] also maximize the likelihood of the conditional density p(xi ∣ zi) by

iteratively taking MAP estimates from the latent posterior p(zi ∣ xi), plugging in the conditional,

and maximizing w.r.t. W. Although closer to probabilistic PCA even this latter approach is

subject to Welling et al. [2008]’s Bayesian criticism that using a point estimate of the latent

posterior is inadequate.11

3.1 Maximum likelihood & Bregman divergence

Assuming that the data matrixXD×N is centered, theK first principalD-dimensional eigenvectors

of the sample covariance Σ̂D×D =
1
N

N

∑
n=1

xnxT
n comprise the optimal MLE solution ŴD×K that

along with the scores ẑn = ŴTxn minimize the square loss J = 1
N

N

∑
i=1
∣∣ xi−x̂i ∣∣2, where x̂i =Wzi.

These optimal values ofW and Z are the maximum likelihood estimates of the Normal conditional

distribution given in (7) in the simplified case where µ = 0 and σ2 = 1:

p(xn ∣ zn,W) = N(Wzn, I) = N (
K

∑
k=1

wkzkn, I) i.e. xdn ∣ Z,W ∼ N(θdn,1) (15)

10See Murphy [2012] §12.2.2 for his proof.
11Slightly misleadingly Mohamed et al. [2008] suggests that Welling et al. [2008]’s criticism applies to

Collins et al. [2001]’s approach.
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with mean parameter θdn = wd1z1n + ... +wdKzKn (as in (5) above). The negative log likelihood

is given by

NLL(W,Z) = −
N

∑
n=1

log p(xn ∣ θn) = −
N

∑
n=1

D

∑
d=1

log p(xdn ∣ θdn)

= const. +
N

∑
n=1

D

∑
d=1
(xdn − θdn)

2.

(16)

Consider the more general case where the observed D-dimensional column vector xn (condi-

tionally on W,Z) follows an Exponential family distribution with natural parameter θn:

xn ∣ Z,W ∼ Expon(θn) (17)

where θn =
K

∑
k=1

wkzkn =WD×KznK×1 . The negative log likelihood takes the form

NLL(W,Z) = −
N

∑
n=1

log p(xn ∣ θn)

= −
N

∑
n=1
(xT

nθn −Ω
∗(θn))

=
N

∑
n=1

BregmanΩ(xn,µn(θn))

(18)

where µn = µn(θn) = E(xn ∣W,Z) = ∇Ω∗(θn), Ω∗(θn) is the cumulant or log partition, and

Ω(µn) is the conjugate dual of Ω∗, and in this case equal to Shannon negentropy.12

Assuming that the elements of the observation column vector are independent, we can also

write NLL(W,Z) = −
N

∑
n=1

D

∑
d=1

log p(xdn ∣ θdn). In fact, Collins et al. [2001] assume that column

vector elements are independent and xnd ∣W,Z ∼ Expon(θnd) where θdn = wd1z1n+ ...+wdKzKn.

3.2 Exponential family & Bregman divergence

The Bregman divergence corresponding to a strictly convex function Ω ∶ S → R with S =

dom(Ω) ⊆RD a convex set, and Ω differentiable on ri(S) is defined as

BΩ(x,y) = Ω(x) − (Ω(y) + ⟨x − y,∇Ω(y)⟩) (19)

where Ω(y) + ⟨x − y,∇Ω(y)⟩ is the tangent of Ω at y, or the Taylor expansion of Ω at y.

12See Mohamed [2011] § 2.16.
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For example, the KL divergence can be expressed as a Bregman divergence using as a strictly

convex function the negative Shannon entropy Ω(p) =
D

∑
d=1

pd log pd of a discrete probability dis-

tribution where
D

∑
d=1

pd = 1. The corresponding Bregman divergence is

BΩ(p,q) = Ω(p) −Ω(q) − ⟨p − q,∇Ω(q)⟩

=
D

∑
d=1

pd log pd −
D

∑
d=1

qd log qd − ⟨p − q,∇Ω(q)⟩

=
D

∑
d=1

pd log pd −
D

∑
d=1

qd log qd −
D

∑
d=1
(pd − qd)(log qd + 1)

=
D

∑
d=1

pd log pd −
D

∑
d=1

pd log qd −
D

∑
d=1

pd +
D

∑
d=1

qd

=
D

∑
d=1

pd log
pd
qd
= KL(p,q).

(20)

Consider now a regular exponential family

pΩ∗,θ(x) = exp(⟨x,θ⟩ −Ω
∗(θ))p0(x) (21)

where µ = µ(θ) = EpΩ∗,θx, the minimal sufficient statistic is x ∈RD, and Ω∗(θ) is the cumulant

or log partition. The conjugate dual of Ω∗ is

Ω(µ) = sup
θ
⟨µ,θ⟩ −Ω∗(θ). (22)

We can obtain the unique θ∗ that corresponds to the sup above in (22):

∇⟨µ,θ⟩ −Ω∗(θ) ∣θ∗= 0 Ô⇒ µ = ∇Ω∗(θ∗). (23)

Remember also that µ(θ) = ∇Ω∗(θ) and θ(µ) = ∇Ω(µ).13

By the definition of the Bregman divergence BΩ(x,µ) = Ω(x)−Ω(µ)− ⟨x−µ,∇Ω(µ)⟩ Ô⇒

Ω(µ)+⟨x−µ,∇Ω(µ)⟩ = Ω(x)−BΩ(x,µ). Thus we can write the arguments inside the exponent

of the regular Exponential family in terms of BΩ:

⟨x,θ⟩ −Ω∗(θ) = ⟨µ,θ⟩ −Ω∗(θ) + ⟨x −µ,θ⟩

= Ω(µ) + ⟨x −µ,∇Ω(µ)⟩

= −BΩ(x,µ) +Ω(x),

(24)

and the log likelihood can be expressed in terms of the Bregman divergence as

log pψ,θ(x) = −BΩ(x,µ) +Ω(x) + log(p0(x)) (25)

where the last two terms do not depend on the parameters.

13See Wainwright et al. [2008], ch.3.
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3.3 Classical Multinomial PCA

In this section we review Banerjee et al. [2005]’s (pp. 1726-1727) derivation of an example of a

Multinomial likelihood expressed in terms of the Bregman divergence with the Shannon entropy.

Suppose a sample xi = (x1i ... xDi)
T
follows a Multinomial distribution with index Mi =

D

∑
d=1

xdi

and vector vector of probabilities pi = (p1i ... pDi)
T
where

D

∑
d=1

pdi1 = 1. Let the corresponding

natural parameter be θiD×1 = WD×KziK×1 . First, we will treat W and zi as fixed unknwon

parameters to be estimated for i = 1, ...,N .

Following Collins et al. [2001] we consider the negative log likelihood of the Mutlinomial in

Exponential family form:

p(xi ∣ zi;Θ) =
Mi!

x1i!...xDi!
px1i1i ...p

xD−1i
D−1i p

Mi−
D−1
∑
d=1

xdi

Di

=
Mi!

x1i!...xDi!
exp(x1i log p1i + ... + xD−1i log pD−1i + (Mi −

D−1
∑
d=1

xdi) log pDi)

=
Mi!

x1i!...xDi!
exp(x1i log

p1i
pDi
+ ... + xD−1i log

pD−1i
pDi

−Mi log
1

pDi
)

=
Mi!

x1i!...xDi!
exp(x1iθ1i + ... + xD−1iθD−1i −Mi log(1 +

D−1
∑
d=1

eθdi)) 14

=
Mi!

x1i!...xDi!
exp(

D

∑
d=1

xdiθdi −Mi log(
D

∑
d=1

eθdi)) .15

(26)

So,

NLL = −
N

∑
i=1

log p(xi ∣W,zi)

= −(log p0(xi) + ⟨xi,θi⟩ −Ω
∗(θi))

(27)

where {xdi}D−1d=1 are the sufficient statistics, θi = {log
pdi
pDi
}D−1d=1 are the natural parameters, Ω∗(θi) =

Mi log
1
pDi
=Mi log (1 +

D−1
∑
d=1

eθdi) is the cumulant, and the expectation parameter is µi = ∇Ω
∗(θi) =

15Add by parts p1 = e
θ1pD, ..., pD−1 = eθD−1pD to get

D−1
∑
d=1

pd = 1−pD = pD
D−1
∑
d=1

eθd and solve for pD =
1

1+
D−1
∑
d=1

eθd
.

15By convention θD = 0.
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Mi

⎡
⎢
⎢
⎢
⎢
⎢
⎣

eθdi

1+
D−1
∑
d=1

eθdi

⎤
⎥
⎥
⎥
⎥
⎥
⎦

D−1

d=1

= [Mipdi]
D−1
d=1 . The Legendre dual of Ω∗ is

Ω(µi) = ⟨µi,θi⟩ −Ω
∗(θi)

=Mi

D−1
∑
d=1

pdi log
pdi
pDi
+Mi log pDi

=Mi

D−1
∑
d=1

pdi log pdi −Mi log pDi
D−1
∑
d=1

pdi +Mi log pDi

=Mi

D

∑
d=1

pdi log pdi =Mi

D

∑
d=1

µdi
Mi

log
µdi
Mi

.

(28)

The Bregman divergence we want is

BΩ(xi,µi) = Ω(xi) −Ω(µi) − ⟨xi −µi,∇Ω(µi)⟩

=Mi

D

∑
d=1

xid
Mi

log
xdi/Mi

µdi/Mi

,
(29)

and for any Exponential family we showed above that

log p(xi ∣W,zi) = −BΩ(xi,µi) + log b(xi) (30)

where log b(xi) = Ω(xi)+log p0(xi) =Mi

D

∑
d=1

xdi
Mi

log xdi
Mi
+log Mi!

x1i!...xDi!
does not involve parameters.

So, the loss becomes

NLL = −
N

∑
i=1

log p(xi ∣W,zi) =
N

∑
i=1

BΩ(xi,µi) =
N

∑
i=1

D

∑
d=1

xdi log
xdi
µdi

(31)

where µdi =Mi
eθdi

D

∑
d=1

eθdi
for d = 1, ...,D − 1, µDi =Mi

1
D

∑
d=1

eθdi
, θdi = wd0 +wd1z1i + ... +wdKzKi, for

simplicity letting the intercept terms wd0 = 0, and setting wD1 = ... = wDK = 0 to ensure that

θDi = 0,∀i =, ...,N .

3.4 Probabilistic Multinomial PCA & Variational EM

3.4.1 Model

Let xi ∼ Multinomial (Mi,pi = (p1i ... pDi)
T
) where

D

∑
d=1

pdi1 = 1. Supposing that the natural

parameter θi follows a Multivariate Normal prior implies that the mean parameter pi follows a

9



Logistic Normal (Atchison and Shen [1980]). Putting everything together:

p(xi∣θi) ∼Multinomial

π(θi) ∼ N ≡ π(pi) ∼ Logistic Normal

p(θi ∣ xi) =
p(xi∣θi)π(θi)

∫ p(xi∣θi)π(θi)dθi

p(xi) = ∫ p(xi∣θi)π(θi)dθi ∼ Logistic Normal Multinomial.

(32)

Since the marginal p(xi) depends on the hyperparameters of the prior π(θi), it can be used in

Empirical Bayes approaches to estimate those hyperparameters.

Let zi be a latent variable of dimension K < D, zi = (z1i ... zKi)
T
∼ N(0, I). We want to

factorize θdi = wd0 +wd1×KziK×1 where wd = (wd1⋯wdK) for d = 1,⋯,D. The complete data log

likelihood is

N

∑
i=1

log p(xi,zi;Θ) =
N

∑
i=1

log p(zi) + log p(xi ∣ zi;Θ). (33)

The Normal prior zi ∼ NK(0, I) has density

p(zi) = (2π)
−K/2 exp−

1

2
zTi zi, (34)

i.e. zki ∼ N(0,1) for k = 1,⋯,K, and p(zi) =
K

∏
k=1

1√
2π
e−

1
2
z2ki . The Multinomial p(xi ∣ zi;Θ) has

the density in (26) above.

So, we can write the complete log likelihood explicitly as

N

∑
i=1

log p(xi,zi;Θ) = −
1

2

N

∑
i=1

zTi zi +
N

∑
i=1

D

∑
d=1

xdiθdi −
N

∑
i=1

Mi log
D

∑
d=1

eθdi , (35)

and plug in θdi = wd0 +wd1×KziK×1 for d = 1...D, and wD1 = ... = wDK = 0.

3.4.2 ELBO

To maximize the joint likelihood p(xi,zi) with classical EM we would need to compute an

expectation w.r.t. p(zi ∣ xi), which is intractable. Alternatively, we can use variational EM (as

in Li and Tao [2010], Chiquet et al. [2018], (Zeng et al. [2022]16) and maximize a lower bound

16Li and Tao [2010] first propose the variational EM for Exponential family probabilistic PCA. Logistic

Normal Multinomial PCA (LNM PCA) is first proposed by Xia et al. [2013] who use Monte Carlo EM.

LNMA PCA is adapted by Zeng et al. [2022] who use variational EM and 0-inflation to circumvent sparse

observations. Also worth mentioning is Fang and Subedi [2023], who use variational EM to fit a Logistic

Normal Multinomial model without the low rank factorization of PCA, as well as Morton et al. [2021] who

describe a neural parametrization of LNM PCA and .
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on the log marginal likelihood using a Normal variational distribution q(zi) ∼ N(miK×1 ,ΣiK×K)

where Σi =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

σ2
1 . . . 0

⋮ ⋱ ⋮

0 . . . σ2
K

⎤
⎥
⎥
⎥
⎥
⎥
⎦i

:

q(zi) = (2π)
k/2 ∣Σi ∣

−1/2 e−
1
2
(zi−mi)TΣ−1i (zi−mi)

q(zki) =
1

√
2πσ2

ki

e
− (zki−mki)2

σ2
ki .

(36)

The lower bound we want to derive is

ELBOi = Eq(zi) log p(xi,zi) −Eq(zi) log q(zi) (37)

The second term is the Shannon entropy of a multivariate Normal, so Eq(zi) log q(zi) =
K
2 +

K
2 log(2π) + 1

2 log ∣Σi ∣. We derive the first term using the densities from (26) and (34)

Eq(zi) log(xi,zi) = const. −
1

2
Eq(zi)z

T
i zi +Eq(zi)

D

∑
d=1

xidθid −Mi log(
D

∑
d=1

eθdi) (38)

From the first non-constant term of (38) we have

Eq(zi)z
T
i zi = Eq(zi)

K

∑
k=1

z2ki =
K

∑
k=1

σ2
ki +m

2
ki = tr(mim

T
i +Σi), (39)

and from the second term

Eq(zi)

D

∑
d=1

xdiθid = Eq(zi)
D

∑
d=1

xdi(wd0 +wdzi) =
D

∑
d=1

xdi(wd0 +wdmi). (40)

For the third term

Eq(zi) log(
D

∑
d=1

ew0d+wdzi) ≤ logEq(zi)
D

∑
d=1

ewd0+wd1z1i+⋯+wdKzKi17 (41)

we need to compute terms likeEq(zi)e
wdkzki where each zki ∼ N(mki, σ2

ki) sinceΣi =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

σ2
1 . . . 0

⋮ ⋱ ⋮

0 . . . σ2
K

⎤
⎥
⎥
⎥
⎥
⎥
⎦i

.

So, wdkzki ∼ N(wdkmki,w2
dkσ

2
ki), and the expectation Eewdkzki is the mean of a Log-Normal dis-

tribution Eewdkzki = ewdkmki+
w2
dkσ2

ki
2 .18 Thus

logEq(zi)
D

∑
d=1

ewd0+wd1z1i+⋯+wdKzKi = log
D

∑
d=1

ewd0+wd1m1i+
w2
d1σ

2
1i

2
+⋅⋅⋅+wdKmKi+

w2
dKσ2

Ki
2

= log
D

∑
d=1

ewd0+wdmi+ 1
2
(wd1⋯wdK)Σi(wd1⋯wdK)T .

(42)

17By Jensen’s inequality for any convex function g, such as − log, Eg(X) ≥ g(EX), so E(− logX) ≥

− logEX, i.e. E(logX) ≤ logEX.
18When X ∼ N(µ,σ2) then Y = eX (i.e. X = logY ) follows a Log-Normal and EY = EeX = eµ+σ

2/2.
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Finally, we can put all terms back together:

ELBOi = Eq log p(zi) +Eq log p(xi ∣ zi) −Eq log q(zi)

= const. −
1

2
Eqz

T
i zi +Eq

D

∑
d=1

xdiθdi −MiEq log(
D

∑
d=1

eθdi) −
1

2
log ∣Σi ∣

≥ const. −
1

2
tr(mT

i mi +Σi) −
1

2
log ∣Σi ∣ +

D

∑
d=1

xid(wd0 +wdmi) −Mi log
D

∑
d=1

ewd0+wdmi+ 1
2
wdΣiw

T
d .

(43)

4 Sparse PCA via Fenchel-Young losses

Often X is made up of very sparse count data (e.g. gene expression, microbiome data, skipgram-

style word embeddings, word phoneme feature combinations [CITE]). To model such cases we can

derive a model analogous to Collins et al. [2001]’s frequentist treatment of the latent variables

as fixed unknown quantities to be estimated, subject to a low rank factorization of the natural

parameter matrix. We optimize the conditional density through a Fenchel-Young loss LΩ(θ,x),

which is a generalization of the Bregman divergence (Blondel et al. [2020] § 3.2), subject to

a low rank factorization of the corresponding parameter matrix. This conditional density is a

sparse deformed Exponential family density. Taking Ω to be the Tsallis entropy and a = 2 yields

a Sparsemax loss (Martins and Astudillo [2016]).

4.1 Simple Fenchel-Young PCA: Toy experiments with Sparsemax

In Figure 1 we compare classical Exponential family PCA with a Bregman divergence objective,

fitted to 100 samples, each of which is made up of D independent Bernoullis, and classical FY

PCA fitted to data generated in the same way, by minimizing the sum of D independent binary

sparsemax projections for each sample.
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Figure 1: Left: 40 epochs Bernoulli Bregman (Colab). Right: 40 epochs 2-class Sparsemax

loss (Colab). There is no generative model to match with the synthetic data generation. 100

samples from 4 templates (colors) of D = 30 independent Bernoullis with p = 0.5 plus some

Bernoulli noise p = 0.05 are clustered with 3-dimensional zi’s, and correspondingly 30×3-dim

W.

In Table 1 we compare Logistic Normal Multinomial (LNM) probabilistic PCA (fitted with

the ELBO objective in (34)) with classical Multinomial PCA (fitted with Bregman divergence

objective), and with classical Sparsemax PCA on low dimensional data reconstruction using as

metric
√
∑(p−p̂)2√
∑p2

:

p(xij = 0) LNM PPCA Multinomial (Bregman) Sparsemax (FY loss)

0.8 0.1606 0.0930 0.0665

0.5 0.1360 0.0859 0.0616

0 0.1692 0.0672 0.1197

Table 1: All models are highly sensitive to random initialization. We report best values over

3 runs. In all cases there are 100 synthetic samples with 50 observed features and 2 latent

dimensions. The PCA factorizations assume 2 latent factors.

The Bregman and FY loss objectives do not assume a probabilistic generative process as both

scores and loadings are treated as fixed, unknown quantities. The LNM PPCA model assumes

a generative story that is mathched by the experiments in the last row of Table 1, where we

do not “induce” sparsity. To generate the synthetic data for the experiments in Table 1 “true”

loadings are drawn from a continuous Uniform(−3.5,3.5) and the “true” scores are drawn from

4 standard 2-dimensional Gaussians. The exponentiated product of scores and loadings is op-

tionally multiplied with independent Bernoullis to induce sparsity corresponding to the Bernoulli

parameter. This step is the only deviation from the generative process of the LNM model. Nor-

malizing the (sparse) product of scores and loadings leads to “true” Multinomial probabilities

that we use to sample an observed synthetic data matrix (each row has total counts drawn from

a Uniform(200,400)).
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We see the expected effect in Table 1 that Sparsemax PCA outperforms the Mutlinomial PCA

and LNM PPCA when the observed data is sparse, since of these models only Sparsemax PCA

can produce reconstructions of the ‘true” Multinomial probabilities containing 0s, in the other

two models the best approximations are instead really small positive values, since the product

of estimated scores and loadings is passed through a softmax to produce the reconstructed

probabilities. Nevertheless, this task is too easy for all of the models, as they all separate the 4

true underlying clusters corresponding to the generative process.

4.2 Fenchel-Young ELBO

4.2.1 Preliminary definitions

Shannon entropy:

−∫ p(t) log p(t)dt = −Ep(t) log p(t) = Ep(t) log
1

p(t)
. (44)

Shannon negetropy:

ΩS(p) = Ep(t) log p(t) = −Ep(t) log
1

p(t)
. (45)

We do not want to use the notation q-log to reserve q for something else, so we call the deformed

logarithm a-log:

loga(p) = {
p1−a−1
1−a a ≠ 1

log p a = 1.19
(46)

The inverse function is

expa(p) = {
(1 + (1 − a)p)

1
1−a a ≠ 1

ep a = 1.
(48)

One important property of log that is not preserved by loga is the identity − log p = log
1
p , instead

− loga
1
p = log2−q p.

2021 Generalize the Shannon negetropy to Tsallis a-negetropy:

Ωa(p) = −Ep(t) loga
1

p(t)
= Ep(t) log2−a p(t)

22 (49)

19In Martins et al. [2022] q-log is called β-log. For b = 2a − 1, a = b+1
2
, 1 − a = 1−b

2
we get

loga(p) = {
2

1−b(p
1−b
2 − 1) b ≠ 1

log p b = 1
(47)

which is closely related to the a-representation of p, ha(p) = p
1−a
2 (Amari [2016], 4.35, 4.18).

20loga
1
p
= 1

1−a (
1

p1−a − 1) =
1

1−a(p
1−2+a − 1) = 1

1−a(p
1−(2−a) − 1) = − log2−a p

21Sears et al. [2008], p. 60-63.
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4.2.2 Probabilistic Fenchel-Young PCA model

Let p(x ∣ z) be the Ωa-regularized prediction map

p(x ∣ z) = p̂Ωafθ(z)(x)

= argmax
p∈M1+(S)

Epfθ(z)(x) −Ωa(p)
(51)

and assume a linear parametrization of the scoring function fθ(z)(x) = θ(z)t(x) where t(x) is the

sufficient statistic and the canonical parameter θ(z) =wz is comprised of a global parameter w

and a latent variable z that corresponds to x. The set M1
+(S) consists of all densities p ∶ S →R+

such that ∫S p(x)dx = 1.

For the Shannon negetropy Ωs the solution of the optimization problem is an exponential

family with canonical parameter θ(z), sufficient statistic t(x) and cumulant function Ω∗s(θ(z)),

i.e. the ith observation xi ∣ zi ∼ Expon(wzi, t(xi)). The parameter of the observation model

(or decoder) is w and

pw(x ∣ z) = p̂Ωsfθ(z)(x)

= exp(wzt(x) −Ω∗(w,z))
(52)

If, additionally, the set of densities M1
+(S) is the simplex ∆∣S∣ then this exponential family is the

Categorical. An analytic form of p(x ∣ z) in the general case of M1
+(S) and a ≠ 1 is given by

eqn. 10 of Martins et al. [2022]:

pw(x ∣ z) ≡ p̂Ωafθ(z)(x)

= exp2−a(θ(z)t(x) −Ω
∗
a(θ(z)))

(53)

For the simplex and a = 2, we get the sparsemax density in eqn. 11 of Martins et al. [2022].

The variational q(z∣x) distribution (or encoder) can also be a Ψa-regularized map. Let fη(z)

be its scoring function. Assuming it has a linear form fη(z) = ηt(z), we can write it also in the

form of eqn. 10 of Martins et al. [2022]. Assume a = 1 and z is continuous, so q(z ∣ x) is a

continuous exponential family or simply a Normal23

qη(z ∣ y) = exp(ηt(z) −Ψ
∗(η)) (55)

22Double-check:

log2−a p(t) =
⎧⎪⎪
⎨
⎪⎪⎩

p(t)1−(2−a)−1
1−(2−a) =

p(t)−1+a−1
−1+a = −1

1−a (
1

p(t)1−a − 1) 2 − a ≠ 1 Ô⇒ a ≠ 1

log p(t) a = 1.
(50)

23The univariate Gaussian in exponential form:

p(z;µ,σ2
) =

1
√
2πσ

exp(−
1

2σ2
(z − µ)2) =

1
√
2π

exp(
µ

σ2
z −

1

2σ2
z −

1

2σ2
µ2
− logσ) (54)
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In § 3.4.2. above, we have non-amortized variational parameters (mik, σ2
ik), so the number of

parameters scales with additional observations.24 Classically in VAEs, we employ an amortized

mean-field variational distribution: qη(z ∣ x) = ∏
N
i=1 qη(zi ∣ xi) where

qη(zi ∣ xi) = N(zi ∣ µ(xi), σ
2(xi)IK×K) (56)

and µ(xi), σ2(xi) are functions of the data, i.e. Neural Nets. So, η = η(ϕ,x), where ϕ is a

parameter that summarizes the corresponding NN parameters, i.e. a global, variational parameter.

We can write qϕ(z ∣ x) = Expon(η(ϕ,x), t(z)), otherwise as PPCA is described above qη(z) =

Expon(η, t(z)) the variational parameters η are estimated along with the parameter w of the

observation model.

4.2.3 Bregman divergence and FY losses

We defined above the Bregman divergence corresponding to a strictly convex function, for example

the negetropy Ψ ∶ dom(Ψ) → R. The arguments of the Bregman divergence are elements of

dom(Ψ). In the exponential family, the elements of dom(Ψ) are mean parameters, so if we

consider two elements µ1,µ2, BΨ(µ1,µ2) = Ψ(µ1) −Ψ(µ2) − ⟨µ1 −µ2,∇Ψ(µ2)⟩.
25 Let θ1,θ2

be corresponding natural parameters. The Fenchel-Young loss is

LΨ(θ1,µ2) = Ψ(µ2) +Ψ
∗(θ1) − θ

T
1µ2

= Ψ(µ2) −Ψ(µ1) − ∇Ψ(µ1)(µ1 −µ2) = BΨ(µ2,µ1),
(57)

since Ψ∗(θ1) = θ
T
1µ1 −Ψ(µ1) = ∇Ψ(µ1)µ1 −Ψ(µ1) and θT

1µ2 = ∇Ψ(µ1)µ2.
26

This is used to express the Bregman divergence between the variational density q(z ∣ y) and

the prior p(z) in terms of a FY loss:27

BΨ(q(z∣x), p(z)) = LΨ(η; q(z∣x)) = Ψ(q(z∣x)) +Ψ
∗(η) −Eq(z∣x)[η(z)]. (58)

Note the last term Eq(z∣y)η(z) is a more general expression that holds for non-exponential densi-

ties. If we say that p(z) = exp(ηz −Ψ∗(η)) then Eq(z∣x)ηz = ηEq(z∣y)z (i.e. the product of the

natural parameter of p(z) and mean of q(z ∣ y)). But if p(z) = exp(ηt(z) −Ψ∗(η)), for this

more general term, the equality in eqn. (57) may not hold.28

the natural parameter η = (
µ
σ2

− 1
2σ2

), suff. stat. t(z) = (
z

z2
), Ψ∗(η) = µ2

2σ2 + logσ = −
η2
1

4η2
− 1

2
log(−2η2),

h(z) = 1√
2π

, p(z ∶ µ,σ2) = h(z) exp(ηT(z) −Ψ∗(η)).
24Lucas et al. [2019] and Morton et al. [2021] use NNs to amortize variational parameters in similar settings.
25Like Taylor series Ψ(µ1) ≈ Ψ(µ2) + (µ1 −µ2)∇Ψ(µ2) + ...
26Take the definition Ψ∗(θ1) = supµ⟨θ1,µ⟩ −Ψ(µ). In exponential families for specific argument θ1, there

is a dual such that θ1 = ∇Ψ(µ1), which is the specific value of µ for which the supµ⟨θ1,µ⟩−Ψ(µ) is attained,

and equals Ψ∗(θ1). Hence we can plug in for θ1 the equal quantity ⟨θ1,µ1⟩ −Ψ(µ1) or ∇Ψ(µ1)µ1 −Ψ(µ1).
27Eqn. above (7) in A. Martins’ “FY ELBO” note.
28η(z)? The reason for trying to write this Bregman divergence as a FY loss is to get a nice expression

for the FY posterior in eqn. (8) of “FY ELBO” and for the FY marginal likelihood of x or evidence in (9).
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Consider eqn. (7) of “FY ELBO”

FΩ,Ψ(q;y) = Eq(z∣x)[LΩ(θ(z),x)] +Ψ(q(z ∣ x)) +Ψ
∗(η) −Eq(z∣x)[η(z)]

= Eq(z∣x)[LΩ(θ(z),x) − η(z)] +Ψ(q(z ∣ x)) +Ψ
∗(η).

(59)

If the Bregman divergence between q(z ∣ x) and p(z) is a KL divergence we can derive its analytic

form, to get derivatives w.r.t. w, ϕ, and apply reparametrization trick.29

4.2.4 Gradients

We derive the gradients of (59) w.r.t the observation model and the inference network parametrs,

W and ϕ respectively, for the simplest case when

KL(θ1,θ2) = BΨ(µ1,µ2) = LΨ(θ2,µ1) = Ψ(µ1) +Ψ
∗(θ2) −µ1θ2. (60)

Let the prior of the latent variable z ∼ N(0, IK×K), and let the variational approximate posterior

be a multivariate Normal with diagonal covariance:

qϕ(z ∣ xi) = N(mi,diag{σ
2
1i, ..., σ

2
Ki}) (61)

where mi(xi) and logσki(xi) are non-linear functions of the data point xi, i.e.

(mi1, ...,miK , logσi1, ..., logσKi) = NNϕ(xi).

The parameter ϕ summarizes the corresponding neural network parameters and it is a global

parameter (the same for all observations xi).30

Consider the empirical data distribution associated with the ith observation, i.e. the proportion
1
Mi

xi =
1
Mi
(x1i ... xDi)

T
. We wish to obtain scoring parameters θi ∈ RD that factor as θi =

WD×KziK×1 such that sparsemax(θi) = p̂Ω[θi] ∈ ∆D approximates the observed xi

Mi
. That is,

the θi that results from minimizing the FY loss

LΩ(θi;xi/Mi) = LΩ(Wzi;xi/Mi) Mi = x1i + ... + xDi (62)

Consider the contribution of the ith observation xi to the “variational free energy” of (eqn. 2

of FY-ELBO)

FΩ,Ψ(q;xi) = Eqϕ(z∣xi)[LΩ(θ(Wzi;xi/Mi))] +KL(qϕ(z ∣ xi) ∣∣ p(z)) (63)

The KL divergence between the diagonal Gaussian qϕ(z ∣ xi) and the standard Gaussian has an

analytic form

KL(qϕ(z ∣ xi) ∣∣ p(z)) =
1

2

K

∑
k=1
(σ2

ik +m
2
ik − 1 − logσ

2
ik) (64)

29Eqn.s (8) and (9) of “FY ELBO” are derived from (7) by FY duality.
30Alternatively if we do not model mi and Σi as functions of xi, we denote all the parameters of qϕi(z)

by ϕi = (mi1, ...,miK , σ2
i1, ..., σ

2
iK).
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Given a set of observations xi ∈ RD, i = 1, ...,N , we estimate WD×K and ϕ by minimizing the

objective

R(W, ϕ) =
N

∑
i=1

FΩ,Ψ(q,xi) (65)

The gradient w.r.t. W is

∇R(W, ϕ) =
N

∑
i=1
Eqϕ(z∣x)∇WLΩ(Wzi;xi/Mi) (66)

From Proposition 2 of Blondel et al. [2020] the gradient of LΩ(θi;xi/Mi) w.r.t. θi is the residual

vector (see p. 36)

∇θi
LΩ(θi;xi/Mi) = p̂Ω(θi) − xi/Mi ∈R

D (67)

Using the chain rule and setting θi =WD×KziK×1 we can calculate the gradient of scalar loss LΩ

w.r.t. W:31

∂LΩ

∂W
(θi;xi/Mi) = (zi (

∂LΩ

∂θi
)

T

)

T

=
∂LΩ

∂θi
zTi = [p̂Ω(θi) − xi/Mi]z

T
i (68)

So,

∇WR(W, ϕ) =
N

∑
i=1
Eqϕ(z∣xi)[p̂Ω(θi) − xi/Mi]z

T
i ≈

N

∑
i=1
[p̂Ω(Wmi) − xi/Mi]m

T
i (69)

plugging in the posterior mean to get the last expression. And

W(t+1) =W(t) + η∇WR(W, ϕ) (70)

where the specific ϕ defines m. Alternatively, instead of the MAP we can estimate the W update

with MC samples

W(t+1) =W(t) + ηEqϕ(z∣xi)∇WLΩ(Wzi;xi/Mi) (71)

The gradient w.r.t. ϕ is

∇ϕFΩ,Ψ(q;xi) = ∇ϕEqϕ(z∣xi)[LΩ(θ(Wzi;xi/Mi))] + ∇ϕKL(qϕ(z ∣ xi) ∣∣ p(z)) (72)

The second term is easy to calculate. For the first term, the variational Gaussian distribution

is reparametrizable in the sense that we can obtain a sample from the variational posterior by

sampling from a base noise distribution and applying a transformation

ϵij ∼ N(0,1) zij =mij + σijϵij (73)

In vector notation (Kingma et al. [2019], p.25):

ϵ ∼ N(0, IK×K) zi =mi +σi ⊙ ϵ (74)

31And using the fact that ∂
∂WTLΩ(θ

T
i ;xi/Mi) = (z

T
i )

T ∂
∂θT

i

LΩ(θ
T
i ;xi/Mi) = zi(

∂LΩ

∂θi1
, ..., ∂LΩ

∂θiD
) = zi (

∂LΩ

∂θi
)
T
.
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where mi =

⎛
⎜
⎜
⎝

m1i

⋮

mKi

⎞
⎟
⎟
⎠

, σi =

⎛
⎜
⎜
⎝

σ1i

⋮

σKi

⎞
⎟
⎟
⎠

, and ⊙ is the element-wise product. We may now express the

gradient w.r.t. ϕ as (Kim et al. [2018])

∇ϕEqϕ(z∣xi)[LΩ(Wzi;xi/Mi)] = ∇ϕEϵ∼N(0,I)LΩ(W(mi +σi ⊙ ϵ);xi/Mi)

= Eϵ∇ϕLΩ(W(mi +σi ⊙ ϵ);xi/Mi)

= Eϵ∇θi
LΩ(θi;xi/Mi)

∂W(mi +σi ⊙ ϵ)

∂ϕ
32

= Eϵ[p̂(W(mi +σi ⊙ ϵ) − xi/Mi]
∂W(mi +σi ⊙ ϵ)

∂ϕ

(75)

We can approximate the expectation in the gradient with a single sample ϵ (Kim et al. [2018],

p.24).

ϕ(t+1) = ϕ(t) + η∇ϕFΩ(q,xi) (76)

If we don’t express the variational posterior parameters as NNs then ϕ = [m1, ...,mN ,Σ1, ...,ΣN]

and for observation i we update mi,Σi.
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