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We study continuously relaxed discrete (CONCRETE)1 latent variables of dependency grammar in

variational autoencoder (VAE) language models. Distinct representations of syntax, p(z), and semantics,

p(x), optimized jointly as p(x, z) share statistical strength. Since the posterior p(z ∣ x) is intractable,

we use a variational approximation q(z ∣ x), which allows the coordination of a conditional random field

(CRF) representation of globally normalized grammar in the encoder with a transition-based represen-

tation of a similar but locally normalized grammar in the decoder. Optimization of this VAE framework

via EM is arguably a cognitively plausible representation of (the acquisition of) functional grammar, i.e.

memorizing a globally normalized grammar in the expensive E-step over a batch, then optimizing for the

best possible greedy decoding that this grammar facilitates with a cheap M-step, intuitively constrained

by finite time and memory resources, and repeating, until you pass the quiz. This VAE setup also makes

possible the cooperative optimization of global normalization in the encoder, and of local, domain- or

language-specific regularization in the decoder e.g. through modeling of higher-order factors. The above

approach to dependency grammar induction is, to our knowledge, new. The two most similar models,

which we combine and relax, through Stochastic Softmax, have produced state-of-the-art unsupervised

constituency Unlabeled Attachment Score (UAS) accuracies with a CRF econder (Kim et al. [2019]),

and state-of-the-art unsupervised dependency UAS accuracies with posterior regularization (Li et al.

[2019]).

Further, we evaluate the effect of recurrence on language model entropy, and on UAS accuracy via

ablation studies on the VAE’s encoder’s and decoder’s neural parametrizations, inspired by Andor et al.

[2016]. That is, given a globally normalized CRF encoder, what is the relative benefit of using BiLSTM

embeddings in the encoder?2 Following Andor et al. [2016], we hypothesize that RNN-based embeddings

are superfluous with a CRF E-step objective, while feed forward embeddings are faster and don’t hurt

performance. Conversely, in the jointly optimized decoder we test the hypothesis that the BiLSTM

representations of the stack and buffer, contribute significantly to the improved accuracy of the grammar

induction model. Our most interesting point is that the non-recurrent embedding parametrization of the

(continuously relaxed) globally normalized CRF encoder allows for faster and more robust sampling. In

turn, this leads to more efficient prevention of posterior collapse in the randomized dynamic programming

style of Fu et al. [2022] who estimate the proposal distribution using successive pairs of randomized

sums over subtrees, where for each subtree the topK paths are computed exactly, while a sample of the

remaining paths is used for importance weighted Rao-Blackwellized variance reduction of the subtree

estimator and bias correction.

1 Background: Recurrent Neural Network Grammars

Dyer et al. [2015] propose the stack LSTM data structure, a stack implemented with recurrent neural

networks (RNNs). Dyer et al. [2016] use the stack LSTM to characterize recurrent neural network

1Maddison et al. [2016]
2This is to compare Kim et al. [2019]’s encoder arc-scores, sij = MLP (BiLSTM(h1, ..., hT )), with Andor et al.

[2016]’s globally normalized feed forward CRF scores within a VAE framework.
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grammars (RNNGs) which are a kind of generative language model: a joint probability distribution

over sentences and their structure. The generative RNNG of Dyer et al. [2016] is based on a pretrained

discriminative RNNG. Intuitively, the discriminative model functions as the latent parser. More precisely,

the discriminative RNNG is a distribution over syntactic parse trees given the observed sentence. In Dyer

et al. [2015] the discriminative RNNG represents a dependency grammar, while in Dyer et al. [2016] the

discriminative RNNG represents a constituency grammar.

Using variational inference, Cheng et al. [2017] jointly train generative and discriminative RNNGs,

modeling constituency parse trees as the latent variables.3 Cheng et al. [2017] use training data to

estimate the parameters of the discriminative RNNG. Li et al. [2019] use posterior regularization and

variational inference to train an unsupervised RNNG (URNNG) whose discriminative component repre-

sents a dependency tree.4 Kim et al. [2019] use a CRF approximation to learn a state of the art URRNG

with a discriminative component that represents a binary constituency tree.

To generalize the underlying latent structure of Kim et al. [2019], we describe a URNNG using a

neural CRF parametrization of an edge-factored dependency parser as the variational distribution. Using

this dependency CRF proposal distribution, we combine Li et al. [2019]’s latent dependency model with

Kim et al. [2019]’s variational inference approach. The CRF over dependency trees is the encoder’s

parser, while a stack LSTM is used as the decoder’s transition-based parser. Estimating the CRF in E-

step and the parameters of the RNNG decoder in the M-step is also appealing as a cognitively plausible

model of language processing.

2 Methodology

A generative language model is a joint distribution over sentences and their latent dependency trees

(spanning arborescences). We obtain the language model by marginalizing the structured latent variable

z in the generative RNNG:

p(x) = ∑
z

p(x, z) (1)

where x is the observed sequence of words and z is an assignment to binary variables which corresponds

to the directed arcs in x’s projective dependency tree:

x = < x0 ≡ ROOT,x1, ..., xn >

z = {zij ∶ i ≠ j,0 ≤ i ≤ n,1 ≤ j ≤ n}

where zij = 1 means that the i-th word in x is the parent of the j-th word.

3Cheng et al. [2017] use an autoencoder to integrate discriminative and generative RNNGs, yielding a reconstruction

process with parse trees as latent variables and enabling the two components to be trained jointly on a language modeling

objective.” (Li et al. [2019], p. 1)
4The posterior regularization of Li et al. [2019] represents universal constraints on the space of latent trees following

Naseem et al. [2010], with methodology for posterior regularization from Ganchev et al. [2010], implemented with neural

networks by Mnih and Gregor [2014].
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A variational lower bound of the marginal log-likelihood is derived by introducing a neural CRF depen-

dency parser, qϕ(z∣x), as an inference network or encoder over the latent variables which approximates

the true posterior, pθ(z∣x):

log pθ(x) = Eqϕ(z∣x) [log
pθ(z, x)

qϕ(z∣x)
] +KL [qϕ(z∣x) ∣∣ pθ(z∣x)] (2)

≥ Eqϕ(z∣x) [log
pθ(z, x)

qϕ(z∣x)
] ≡ ELBO (3)

The transition-based generative RNNG or decoder, pθ(z, x), and the graph-based inference model,

qϕ(z∣x), are trained simultaneously by optimizing the Evidence Lower Bound (ELBO) with respect to

the parameters θ and ϕ.

2.1 Encoder: CRF graph-based dependency parser

We assume that the joint distribution over the latent variables, z, is associated with an undirected

graph G over the set of random variables z, such that each link variable, zij , is a vertex of G. Let C

be the set of cliques in G. The members of a clique are neighbors. The joint distribution over z’s is a

Markov random field (MRF) or undirected graphical model if the random variables z obey the Markov

property with respect to the graph G. That is, every variable zij is conditionally independent of all the

other variables in the graph given its neighbors. The graphical structure of G is used to factorize the

joint distribution over z’s into a product of potential functions or local factors. Each potential function

operates on a set of random variables that form a clique in G. So, conditionally independent random

variables do not appear in the same potential function.

A conditional random field (CRF) may be viewed as an MRF which is globally conditioned on the

observed sequence, x. So a CRF makes independence assumptions among z’s but not within x. A

CRF is a conditional distribution, p(z∣x), with an associated graphical structure that describes the

dependencies among the z’s.5 Note that while dependency tree links are directed arcs “the underlying

graphical model used to compute the likelihood of a parse, is an undirected graphical model” (Smith

[2010]). As long as the joint model over z’s is a first-order factorization, it does not take into account

potential functions that involve two or more directed arcs.

The arc factored model is a first-order factorization where we assume that the individual directed

arcs of the dependency tree are independent. Assuming an arc factored model, in which ∑ij zij = n

(McDonald et al. [2005]),6 a CRF graph-based parser defines the conditional probability of a dependency

5Smith and Eisner [2008]; Smith [2010]
6Pei et al. [2015] and Wang and Chang [2016] implement a neural version of the original method of McDonald et al.

[2005] and learn the parameters using a “max-margin” optimization criterion and training data.

A 2nd-order factorization model takes into account scores based on adjacent links (McDonald and Pereira [2006]). A

3rd-order model uses sibling and grandparent scores (Koo and Collins [2010]). Pei et al. [2015] comment that a neural

1st-order (edge-factored) model can be competitive with higher order factorization, as it is able to capture richer contextual

information.
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tree z given the sentence x through the Gibbs distribution (Smith [2010]):

qϕ(z∣x) =
escoreϕ(z,x)

∑
all valid z′

escoreϕ(z
′,x) (4)

where the score of a tree, z, is the sum of the scores of all its edges, zij :

scoreϕ(z, x) = 1{z is valid} ⋅∑
i≠j

zijsij (5)

and sij = scoreϕ(xi → xj ;x) represents the strength of the arc’s association, or how likely word xi
is the head of word xj , and it depends on the words x and parameters ϕ. The score sij is a log

potential function that depends only on one link variable describing the edge xi Ð→ xj , i.e. a first-order

factorization. Below we describe the neural parametrization of the sij ’s.

2.1.1 Neural arc scores

The neural parametrization of the arc scores described below is standard in current supervised parsers,

however, as far as we know, it has not been used before to train an unsupervised dependency parser.

The arc scores, sij , can be parametrized with neural networks as follows:

1. Given word embeddings, ewi ∈R
de , and POS embeddings, epi ∈R

de , we concatenate them as

xi = g(We[ewi ∶ epi] + be)

where de is the embedding dimension, be ∈ R
de is a bias term, We ∈ R

de×2de is a weight matrix,

g is an elementwise activation (ReLU), and xi is the overall word input representation.

2. For each sentence, x, run a bidiretional LSTM over the ordered sequence of xi’s. We obtain the

forward, [
Ð→
h1, ...,

Ð→
hn], and backward, [

←Ð
h1, ...,

←Ð
hn], hidden states of the BiLSTM and concatenate

or add them:

vi =
Ð→
hi +
←Ð
hi .

The output vectors of the BiLSTM, vi ∈ R
de , are used as the final word embeddings.

3. The context information of a head-modifier pair, xi Ð→ xj , results from dividing the sentence x in

three parts: prefix, infix, suffix, and using LSTM-Minus (Wang and Chang [2016]) to obtain the

segment embeddings:

x = [v0...vi−1] [vi...vj] [vj+1...vn] (6)

The prefix of head-modifier pair, xi Ð→ xj , is represented by the LSTM’s last hidden state of

that segment, vi−1. Correspondingly, suffix(xi Ð→ xj) = vn−vj , and infix(xi Ð→ xj) = vj −vi−1.

When no prefix or suffix exists, the corresponding embedding is set to 0.
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4. For each arc, xi Ð→ xj , we concatenate the embeddings of head word, modifier word, and sentence

segments:

aij = [vi ∶ vj ∶ prefix(xi Ð→ xj) ∶ infix(xi Ð→ xj) ∶ suffix(xi Ð→ xj)]

Then we model the direction of the edge using a direction-specific linear transformation of aij :

l =W d
a aij + b

d
a

where d ∈ {LEFT, RIGHT} indicates the direction of the child word, and W d
a , b

d
a are respectively

a weight matrix and a bias term. There are separate parameters for each direction.

5. The arc scores are obtained by an elementwise activation function, g, applied to the last linear

transformation:

sij = g(W
d
a aij + b

d
a)

where g(l) = tanh(l3 + l) is the tanh-cube function. The cube extension is added to enhance

ability of capturing complex interactions.

Thus the variational distribution, qϕ(z∣x), is parametrized by ϕ = (We, be,W
d
a , b

d
a).

2.2 Decoder: Transition-based RNNG

The transition-based dependency RNNG models the joint distribution, pθ(x, z), of a latent tree, z, and an

observed sequence, x, as a sequence of transition actions, zt ∈ {GENERATE, L-REDUCE, R-REDUCE}.

At time step t, the RNNG either generates words and adds them to a buffer, or combines the top two

words of a stack with a left or right arc and merges them into a single construct (Dyer et al. [2016];

Cheng et al. [2017]; Li et al. [2019]; Kim et al. [2019]):

pθ(x, z) =
T

∏
t=1

p(zt∣ut) ⋅ p(xt∣ut)
1{zt=GENERATE} (7)

where p(zt∣ut) is a Categorical distribution with three categories corresponding to the possible transition

actions, and p(xt∣ut) is a Categorical distribution with ∣W ∣ categories where W is the vocabulary set.

The state embedding, ut, represents the full history: all actions up to t, z<t, and all generated words

up to t in the ouput buffer, x<t. Note that xt is not the t-th word in the sequence x, rather we mean

xm(t) where

m(t) =
t

∑
t=1

1{zt = GENERATE} .

To compute the state embedding ut, we concatenate [st ∶ bt] and calculate

ut =W2 tanh(W1[st ∶ bt] + bias) (8)

where st is the stack embedding obtained by a stack LSTM and bt is the buffer embedding. More

precisely, bt is the final hidden state of an LSTM that reads the word embeddings of the generated

words in the decoder’s output buffer.
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2.2.1 Stack LSTM

The stack embedding st is the hidden state of a stack LSTM (Dyer et al. [2015]) that reads the

embeddings of the subtrees on the stack.

Whenever a REDUCE transition action is predicted, the items making up the tree fragment are

composed into a single vector, by applying a function to the concatenated embeddings of the head and

dependent:

c = tanh(W3[h ∶ d] + bias) .

This composed vector is then fed as a single input into an LSTM that has rewound its hidden state to

the previous element that was extended:

st = hnext = LSTM(c, hprevious) .

Thus the decoder, pθ(x, z), is parametrized by θ = (W1,W2,W3, bias).

2.3 Gumbel relaxation and Randomized Sampling

To optimize the ELBO of equation (3) both Li et al. [2019] and Kim et al. [2019] use a control variate

to reduce the score function estimator’s variance (see sections 3.1, 3.3 below). Alternatively, we can

optimize the ELBO by using the Gumbel-Softmax approach to latent variables, applying Kingma and

Welling [2013]’s reparametrization trick after converting the discrete variable over syntactic trees into

a continuous one. In all cases we decompose the ELBO as Lx = Eqϕ(z) log pθ(x, z) +H(q(z)) where

the entropy H(z) = −Eqϕ(z) log qϕ(z) is computed exactly; its partial derivative with respect to ϕ is

computed by automatic differentiation. Instead of using Monte Carlo samples to estimate the partial

derivative with respect to ϕ of the first term Eqϕ(z) log pθ(x, z) and computing the score function with

REINFORCE, following the perturb-and-MAP approach of Papandreou and Yuille [2011], similarly with

Corro and Titov [2018], we approximate Eqϕ(z) log pθ(x, z) with a single sample Monte Carlo estimate

that uses a continuous relaxation z̃ of the discrete latent variable:

1. Perturb the arc scores by adding random Gumbel noise:

sij + gij

where gij = − log(− loguij) with uij ∼ Uniform(0,1)

2. Draw a sample tree z∗ by computing the most probable structure with the perturbed weights:

z∗ = argmax
z

1{z is valid}∑
i≠j

zij(sij + gij)

The highest scoring dependency tree z∗ is computed with the inside-outside algorithm.

3. Replacing the one-hot argmax operations of the inside-outside algorithm with a softmax, results

in a continuous relaxation z̃ of the discrete z∗ that is a differentiable function of ϕ.7

7Note that the perturbations are local and therefore the sample is approximate.
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Randomized sampling can be used to compute the hard sample z∗ and its soft relaxation z̃, using

only the topK most probable subtree paths and a sample of the less likely paths. A differentiable inside

algorithm can be derived where for each subtree the topK paths are computed exactly, while a sample

of the remaining paths is used for importance weighted Rao-Blackwellized variance reduction of the

subtree estimator and bias correction.8

3 Appendix

3.1 Evidence Lower Bound

Recall the marginal generative language model of equation (1):

log p(x) = log∑
z

p(x, z)

= log∑
z

p(x) ⋅ p(z∣x)

The true posterior p(z∣x) is intractable, so we use variatonal inference to learn approximate maximum

likelihood estimates of the parameters, θ, ϕ. For any variational density, q(z), the evidence lower bound

(ELBO) is given by

Lx = Eq(z) log
p(x, z)

q(z)
= Eq(z) log p(x, z) +H(q(z)) ≤ log p(x) (9)

where H(z) = −Eq(z) log q(z) is the entropy. We take as variational density, q(z), the encoder of section

2.1, qϕ(z∣x), with parameters ϕ = (We, be,W
d
a , b

d
a), and jointly optimize the graph-based encoder and

transition-based decoder by using Expectation Maximization to maximize the ELBO objective:

Lx = Eqϕ(z∣x) log
pθ(x, z)

qϕ(z∣x)
(10)

3.2 Expectation Maximization (EM)

Repeat until convergence {

(E-Step) For some initial value of ϕ, generate m samples z(1), ..., z(m) from the encoder

qϕ(z
(j)
∣x; θ) =

escoreϕ(z
(j),x)

∑
all valid z′

escoreϕ(z
′,x) (11)

(M-Step) Maximize the ELBO with respect to θ and ϕ:

θ ∶= argmax
θ
∑
j

Eqϕ(z(j)∣x) log
pθ(x, z

(j))

qϕ(z(j)∣x)
(12)

}
8This type of randomized dynamic programming VAE with latent trees architecture is mentioned in Fu et al. [2022],

though not implemented or derived in detail.
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3.3 Optimization

3.3.1 Gradient of ELBO with respect to θ

∂Lx

∂θ
= Eqϕ(z∣x)

∂

∂θ
log

pθ(x, z)

qϕ(z∣x)

= Eqϕ(z∣x)
∂

∂θ
log pθ(x, z)

≈
1

M
∑
m

∂

∂θ
log pθ(x, z

(m)
)

3.3.2 Gradient of ELBO with respect to ϕ

The gradient Lx in equation (10) with respect to the inference network parameters ϕ involves two steps.

The gradient of the entropy −Eq(z) log q(z) can be obtained exactly through automatic differentiation.

The gradient of Eq(z) log p(x, z) is approximated through the score function as follows9:

∂

∂ϕ
Eqϕ(z∣x)[log pθ(x, z)] =

∂

∂ϕ
∑
z

qϕ(z∣x) ⋅ log pθ(x, z)

= ∑
z

log pθ(x, z) ⋅
∂

∂ϕ
qϕ(z∣x)

Using the identity ∂
∂ϕqϕ(z∣x) = qϕ(z∣x)

∂
∂ϕ log qϕ(z∣x), we get

∑
z

log pθ(x, z) ⋅
∂

∂ϕ
qϕ(z∣x) = ∑

z

qϕ(z∣x) ⋅
∂

∂ϕ
log qϕ(z∣x) ⋅ [log pθ(x, z)]

= Eqϕ(z∣x) log pθ(x, z) ⋅
∂

∂ϕ
log qϕ(z∣x)

≈
1

M
∑
m

log pθ(x, z
(m)
) ⋅

∂

∂ϕ
log qϕ(z

(m)
∣x)

Kim et al. [2019] reduce the variance of the score function estimator by subtracting the control variate

b(x) = 1
M−1 ∑j≠m log pθ (x, z

(j)):

∇ϕEqϕ(z∣x) log pθ(x, z) − b(x) = Eqϕ(z∣x) [log pθ(x, z) − b(x)]∇ϕ log qϕ(z∣x)

≈
1

M
∑
m

[log pθ(x, z
(m)
) − b(x)]∇ϕ log qϕ(z

(m)
∣x)
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